共 69 条
Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo
被引:313
作者:
Kabashi, Edor
[1
,2
,3
,4
]
Lin, Li
[3
,4
]
Tradewell, Miranda L.
[5
,6
]
Dion, Patrick A.
[1
,2
]
Bercier, Valerie
[1
,2
,3
,4
]
Bourgouin, Patrick
[1
,2
]
Rochefort, Daniel
[1
,2
]
Hadj, Samar Bel
[1
,2
]
Durham, Heather D.
[5
,6
]
Velde, Christine Vande
[1
,2
]
Rouleau, Guy A.
[1
,2
]
Drapeau, Pierre
[3
,4
]
机构:
[1] Univ Montreal, Ctr Excellence Neur, CHUM Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Med, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Pathol & Cell Biol, Montreal, PQ, Canada
[4] Univ Montreal, Grp Rech Syst Nerveux Cent, Montreal, PQ, Canada
[5] McGill Univ, Dept Neurol Neurosurg, Montreal, PQ, Canada
[6] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
关键词:
AMYOTROPHIC-LATERAL-SCLEROSIS;
FRONTOTEMPORAL LOBAR DEGENERATION;
CU/ZN-SUPEROXIDE-DISMUTASE;
SPINAL MUSCULAR-ATROPHY;
DNA-BINDING PROTEIN-43;
CELL-DEATH;
NEURON DEGENERATION;
ZEBRAFISH MODEL;
GENE-MUTATIONS;
DISEASE;
D O I:
10.1093/hmg/ddp534
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
TDP-43 has been found in inclusion bodies of multiple neurological disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease and Alzheimer's disease. Mutations in the TDP-43 encoding gene, TARDBP, have been subsequently reported in sporadic and familial ALS patients. In order to investigate the pathogenic nature of these mutants, the effects of three consistently reported TARDBP mutations (A315T, G348C and A382T) were tested in cell lines, primary cultured motor neurons and living zebrafish embryos. Each of the three mutants and wild-type (WT) human TDP-43 localized to nuclei when expressed in COS1 and Neuro2A cells by transient transfection. However, when expressed in motor neurons from dissociated spinal cord cultures these mutant TARDBP alleles, but less so for WT TARDBP, were neurotoxic, concomitant with perinuclear localization and aggregation of TDP-43. Finally, overexpression of mutant, but less so of WT, human TARDBP caused a motor phenotype in zebrafish (Danio rerio) embryos consisting of shorter motor neuronal axons, premature and excessive branching as well as swimming deficits. Interestingly, knock-down of zebrafisfh tardbp led to a similar phenotype, which was rescued by co-expressing WT but not mutant human TARDBP. Together these approaches showed that TARDBP mutations cause motor neuron defects and toxicity, suggesting that both a toxic gain of function as well as a novel loss of function may be involved in the molecular mechanism by which mutant TDP-43 contributes to disease pathogenesis.
引用
收藏
页码:671 / 683
页数:13
相关论文