Potassium channel gating observed with site-directed mass tagging

被引:49
作者
Kelly, BL [1 ]
Gross, A [1 ]
机构
[1] Northwestern Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Chicago, IL 60611 USA
关键词
D O I
10.1038/nsb908
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Potassium channels allow the selective flow of K+ ions across otherwise impermeable membranes. During a process called gating, these channels undergo a conformational change that proceeds from a closed to an open state. The closed state of KcsA, a prokaryotic potassium channel, has been structurally well characterized with equilibrium structural techniques. However, attempts to obtain a structural description of the gating transition of the channel have been hampered because the open state is only transiently occupied and, therefore, not readily accessible to such techniques. Here we describe a non-equilibrium technique that we call site-directed mass tagging and use this technique to probe the conformational change that KcsA undergoes during gating. The results indicate that KcsA is a dynamically modular molecule; the extracellular half of the membrane-spanning region is held rigid during gating, while the intracellular half undergoes a significant conformational change.
引用
收藏
页码:280 / 284
页数:5
相关论文
共 22 条
[1]   Zeptomole-sensitivity electrospray ionization - Fourier transform ion cyclotron resonance mass spectrometry of proteins [J].
Belov, ME ;
Gorshkov, MV ;
Udseth, HR ;
Anderson, GA ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2000, 72 (10) :2271-2279
[2]   High mass-measurement accuracy and 100% sequence coverage of enzymatically digested bovine serum albumin from an ESI-FTICR mass spectrum [J].
Bruce, JE ;
Anderson, GA ;
Wen, J ;
Harkewicz, R ;
Smith, RD .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2595-2599
[3]   The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria [J].
Cantor, RS .
CHEMISTRY AND PHYSICS OF LIPIDS, 1999, 101 (01) :45-56
[4]   pH-dependent gating in the Streptomyces lividans K+ channel [J].
Cuello, LG ;
Romero, JG ;
Cortes, DM ;
Perozo, E .
BIOCHEMISTRY, 1998, 37 (10) :3229-3236
[5]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[6]   Access of ligands to cavities within the core of a protein is rapid [J].
Feher, VA ;
Baldwin, EP ;
Dahlquist, FW .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (06) :516-521
[7]   Structure of the KcsA potassium channel from Streptomyces lividans:: A site-directed spin labeling study of the second transmembrane segment [J].
Gross, A ;
Columbus, L ;
Hideg, K ;
Altenbach, C ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (32) :10324-10335
[8]   Identifying conformational changes with site-directed spin labeling [J].
Hubbell, WL ;
Cafiso, DS ;
Altenbach, C .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (09) :735-739
[9]   Crystal structure and mechanism of a calcium-gated potassium channel [J].
Jiang, YX ;
Lee, A ;
Chen, JY ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 417 (6888) :515-522
[10]   The open pore conformation of potassium channels [J].
Jiang, YX ;
Lee, A ;
Chen, JY ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 417 (6888) :523-526