A generalized Mahalanobis distance for mixed data

被引:27
作者
de Leon, AR
Carrière, KC
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
latent variable models; maximum likelihood; measurement level; multivariate normal distribution; polychoric and polyserial correlations; probit models;
D O I
10.1016/j.jmva.2003.08.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A distance for mixed nominal, ordinal and continuous data is developed by applying the Kullback-Leibler divergence to the general mixed-data model, an extension of the general location model that allows for ordinal variables to be incorporated in the model. The distance obtained can be considered as a generalization of the Mahalanobis distance to data with a mixture of nominal, ordinal and continuous variables. Moreover, it includes as special cases previous Mahalanobis-type distances developed by Bedrick et al. (Biometrics 56 (2000) 394) and Bar-Hen and Daudin (J. Multivariate Anal. 53 (1995) 332). Asymptotic results regarding the maximum likelihood estimator of the distance are discussed. The results of a simulation study on the level and power of the tests are reported and a real-data example illustrates the method. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 185
页数:12
相关论文
共 21 条
[1]   MULTIVARIATE 2 SAMPLE TESTS WITH DICHOTOMOUS AND CONTINUOUS VARIABLES .I. LOCATION MODEL [J].
AFIFI, AA ;
ELASHOFF, RM .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (01) :290-&
[2]   THE GROUPED CONTINUOUS MODEL FOR MULTIVARIATE ORDERED CATEGORICAL VARIABLES AND COVARIATE ADJUSTMENT [J].
ANDERSON, JA ;
PEMBERTON, JD .
BIOMETRICS, 1985, 41 (04) :875-885
[3]  
[Anonymous], 1979, Multivariate analysis
[4]   GENERALIZATION OF THE MAHALANOBIS DISTANCE IN THE MIXED CASE [J].
BARHEN, A ;
DAUDIN, JJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1995, 53 (02) :332-342
[5]   Estimating the Mahalanobis distance from mixed continuous and discrete data [J].
Bedrick, EJ ;
Lapidus, J ;
Powell, JF .
BIOMETRICS, 2000, 56 (02) :394-401
[6]  
DELEON AR, 2002, 0205 U ALB DEP MATH
[7]  
DRASGOW F, 1986, ENCY STAT SCI, P68
[8]  
Fisher L.D., 1993, BIOSTATISTICS METHOD
[9]  
KOEPSELL TD, 1981, SURG GYNECOL OBSTET, V153, P508
[10]   A VALUATION OF STATE OF OBJECT BASED ON WEIGHTED MAHALANOBIS DISTANCE [J].
KRUSINSKA, E .
PATTERN RECOGNITION, 1987, 20 (04) :413-418