Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations

被引:83
作者
Barahona, D. [1 ]
West, R. E. L. [3 ]
Stier, P. [3 ]
Romakkaniemi, S. [4 ]
Kokkola, H.
Nenes, A. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[3] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[4] Univ Eastern Finland, Dept Math & Phys, Oulu, Finland
基金
芬兰科学院;
关键词
DROPLET FORMATION; KINETIC LIMITATIONS; AEROSOL; MODELS;
D O I
10.5194/acp-10-2467-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large cloud condensation nuclei (CCN) (e.g., aged dust particles and seasalt) cannot attain their equilibrium size during the typical timescale of cloud droplet activation. Cloud activation parameterizations applied to aerosol with a large fraction of large CCN often do not account for this limitation adequately and can give biased predictions of cloud droplet number concentration (CDNC). Here we present a simple approach to address this problem that can easily be incorporated into cloud activation parameterizations. This method is demonstrated with activation parameterizations based on the 'population splitting' concept of Nenes and Seinfeld (2003); it is shown that accounting for large CCN effects eliminates a positive bias in CDNC where the aerosol dry geometric diameter is greater than 0.5 mu m. The method proposed here can also be extended to include the water vapor depletion from pre-existing droplets and ice crystals in global and regional atmospheric models.
引用
收藏
页码:2467 / 2473
页数:7
相关论文
共 22 条
[1]   A parameterization of aerosol activation 2. Multiple aerosol types [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D5) :6837-6844
[2]  
[Anonymous], 2020, Gothenburg Protocol to reduce transboundary air pollution, DOI DOI 10.5860/CHOICE.44-4512
[3]  
[Anonymous], 1998, Microphysics of clouds and precipitation
[4]   Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation - polydisperse ice nuclei [J].
Barahona, D. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :5933-5948
[5]   Parameterization of cloud droplet formation in large-scale models: Including effects of entrainment [J].
Barahona, Donifan ;
Nenes, Athanasios .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D16)
[6]   Atmospheric science - Reshaping the theory of cloud formation [J].
Charlson, RJ ;
Seinfeld, JH ;
Nenes, A ;
Kulmala, M ;
Laaksonen, A ;
Facchini, MC .
SCIENCE, 2001, 292 (5524) :2025-2026
[7]   Kinetic limitations on droplet formation in clouds [J].
Chuang, PY ;
Charlson, RJ ;
Seinfeld, JH .
NATURE, 1997, 390 (6660) :594-596
[8]   On the parameterization of activation spectra from cloud condensation nuclei microphysical properties [J].
Cohard, JM ;
Pinty, JP ;
Suhre, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D9) :11753-11766
[9]   Continued development of a cloud droplet formation parameterization for global climate models [J].
Fountoukis, C ;
Nenes, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D11) :1-10
[10]   Refinements to the Kohler's theory of aerosol equilibrium radii, size spectra, and droplet activation: Effects of humidity and insoluble fraction [J].
Khvorostyanov, Vitaly I. ;
Curry, Judith A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D5)