Manifestation of classical bifurcation in the spectrum of the integrable quantum dimer

被引:78
作者
Aubry, S [1 ]
Flach, S [1 ]
Kladko, K [1 ]
Olbrich, E [1 ]
机构
[1] MAX PLANCK INST PHYS COMPLEX SYST,D-01187 DRESDEN,GERMANY
关键词
D O I
10.1103/PhysRevLett.76.1607
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the classical and quantum properties of the integrable dimer problem. The classical version exhibits exactly one bifurcation in phase space, which gives birth to permutational symmetry broken trajectories and a separatrix. The quantum analysis yields all tunneling rates (splittings) in leading order of perturbation. In the semiclassical regime the eigenvalue spectrum obtained by numerically exact diagonalization allows one to conclude about the presence of a separatrix and a bifurcation in the corresponding classical model.
引用
收藏
页码:1607 / 1610
页数:4
相关论文
共 8 条
[1]  
ADAMS BG, 1994, ALGEBRAIC APPROACH S
[2]  
AUBRY S, IN PRESS PHYSICA AMS
[3]   THE QUANTUM-THEORY OF LOCAL MODES IN A COUPLED SYSTEM OF NONLINEAR OSCILLATORS [J].
BERNSTEIN, L ;
EILBECK, JC ;
SCOTT, AC .
NONLINEARITY, 1990, 3 (02) :293-323
[4]   QUANTIZING A SELF-TRAPPING TRANSITION [J].
BERNSTEIN, LJ .
PHYSICA D, 1993, 68 (01) :174-179
[5]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[6]   THE DISCRETE SELF-TRAPPING EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
SCOTT, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :318-338
[7]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[8]  
Wolfram, 2017, MATHEMATICA