Wigner distribution function for Euclidean systems

被引:43
作者
Nieto, LM [1 ]
Atakishiyev, NM
Chumakov, SM
Wolf, KB
机构
[1] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Cuernavaca 62251, Morelos, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 16期
关键词
D O I
10.1088/0305-4470/31/16/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Euclidean systems include poly-and monochromatic wide-angle optics, acoustics, and also infinite discrete data sets. We use a recently defined Wigner operator and (quasiprobability) distribution function to set up and study the phase-space evolution of these models, subject to differential and difference equations, respectively. Infinite data sets and two-dimensional monochromatic (Helmholtz) fields are thus shown by their Wigner function on a cylinder of (2 pi) direction and location; the Wigner function for polychromatic wavefields has R(3) 'c-number' coordinates of (two-dimensional) wavenumber and position.
引用
收藏
页码:3875 / 3895
页数:21
相关论文
共 18 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1991, REPRESENTATION LIE G
[3]  
ATAKISHIYEV NM, 1997, P 5 INT C SQUEEZ STA
[4]  
ATAKISHIYEV NM, 1998, UNPUB J MATH PHYS
[5]  
BARTELT H, 1980, ISRAEL J TECHNOL, V18, P260
[6]   WIGNER DISTRIBUTION FUNCTION AND ITS OPTICAL PRODUCTION [J].
BARTELT, HO ;
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1980, 32 (01) :32-38
[7]   WIGNER DISTRIBUTION FUNCTION DISPLAY OF COMPLEX 1D SIGNALS [J].
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1982, 42 (05) :310-314
[8]  
GOODMAN JW, 1968, INTRO FOURIER OPTICS, pCH2
[9]   DISTRIBUTION-FUNCTIONS IN PHYSICS - FUNDAMENTALS [J].
HILLERY, M ;
OCONNELL, RF ;
SCULLY, MO ;
WIGNER, EP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 106 (03) :121-167
[10]   THEORY AND APPLICATION OF THE QUANTUM PHASE-SPACE DISTRIBUTION-FUNCTIONS [J].
LEE, HW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 259 (03) :147-211