Predicting cyclone tracks in the north Indian Ocean: An artificial neural network approach

被引:33
作者
Ali, M. M. [1 ]
Kishtawal, C. M.
Jain, Sarika
机构
[1] Natl Remote Sensing Agcy, Div Oceanog, Hyderabad 500037, Andhra Pradesh, India
[2] Ctr Space Applicat, Meteorol Oceanog Grp, Ahmadabad 380015, Gujarat, India
关键词
D O I
10.1029/2006GL028353
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Predicting cyclone tracks in the Indian Ocean has been a challenging problem. In this paper, we used past 12 hours of observations ( 2 positions, at 6 hourly intervals and the present position) to predict the position of a cyclone 24 hours in advance in terms of latitude and longitude. For this purpose we adopted an artificial neural network approach using 32 years ( 1971 - 2002) of tropical cyclone best track analysis over the Indian Ocean. The mean absolute error between the estimated and actual latitude ( longitude) is 0.75 (0.87) degrees with correlation coefficient of 0.98 (0.99) for the prediction data set that was not used for developing the model. The mean error of estimation of the distance between the best track and the predicted positions is 137.5 km. Forecasts for 12, 36, 48, 60 and 72 hours were also attempted.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach [J].
Ali, MM ;
Swain, D ;
Weller, RA .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (20) :L203081-4
[2]   A neural network model for predicting typhoon intensity [J].
Baik, JJ ;
Paek, JS .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2000, 78 (06) :857-869
[3]  
Bourras D, 2003, J APPL METEOROL, V42, P227, DOI 10.1175/1520-0450(2003)042<0227:EOLHFF>2.0.CO
[4]  
2
[5]  
Carr LE, 2000, WEATHER FORECAST, V15, P641, DOI 10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO
[6]  
2
[7]  
Chen JJ, 2003, REC RES DEV PLANT S, V1, P31
[8]  
Elsberry R. L., 1995, GLOBAL PERSPECTIVES, P106
[9]  
Gupta A., 2006, MAUSAM, V57, P151
[10]  
Heming JT., 1995, METEOROL APPL, V2, P171, DOI DOI 10.1002/MET.5060020211