Cellular response to hypoxia involves signaling via Smad proteins

被引:129
作者
Zhang, H
Akman, HO
Smith, ELP
Zhao, J
Murphy-Ullrich, JE
Siddiqui, MAQ
Batuman, OA
机构
[1] Suny Downstate Med Ctr, Div Hematol Oncol, Dept Med, Brooklyn, NY 11203 USA
[2] Suny Downstate Med Ctr, Dept Anat & Cell Biol, Brooklyn, NY 11203 USA
[3] Suny Downstate Med Ctr, Dept Psychiat, Brooklyn, NY 11203 USA
[4] Univ Alabama, Dept Pathol, Birmingham, AL 35294 USA
[5] Univ Alabama, Cell Adhes & Matrix Res Ctr, Birmingham, AL 35294 USA
关键词
D O I
10.1182/blood-2002-02-0629
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The transforming growth factor-beta (TGF-beta) family of cytokines regulates vascular development and inflammatory responses. We have recently shown that exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia (11% O-2) increases gene expression and bioactivation of TGF-beta2 and induces its downstream effectors, Smad proteins (Smads), to associate with DNA. In the present study, we show that hypoxia-induced TGF-beta2 gene expression is dependent on thrombospondin-1-mediated bioactivation of latent TGF-beta. Blocking TGF-beta2 but not TGF-beta1 in hypoxic endothelial cell cultures inhibited induction of the TGF-beta2 gene, indicating that an autocrine mechanism driven by bioactivation of TGF-beta2 leads to its gene expression in hypoxic HUVECs. Exposure of HUVECs to hypoxia resulted in phosphorylation and nuclear transportation of Smad2 and Smad3 proteins as well as stimulation of transcriptional activities of Smad3 and the transcription factor hypoxia-inducible factor-1alpha and culminated in up-regulation of TGF-beta2 gene expression. Autocrine regulation of TGF-beta2 production in hypoxia may involve cross-talk between Smad3 and HIF-1alpha signaling pathways, and could be an important mechanism by which endothelial cells respond to hypoxic stress.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 70 条
[1]   AN ASSAY FOR TRANSFORMING GROWTH-FACTOR-BETA USING CELLS TRANSFECTED WITH A PLASMINOGEN-ACTIVATOR INHIBITOR-1 PROMOTER LUCIFERASE CONSTRUCT [J].
ABE, M ;
HARPEL, JG ;
METZ, CN ;
NUNES, I ;
LOSKUTOFF, DJ ;
RIFKIN, DB .
ANALYTICAL BIOCHEMISTRY, 1994, 216 (02) :276-284
[2]   Response to hypoxia involves transforming growth factor-β2 and Smad proteins in human endothelial cells [J].
Akman, HO ;
Zhang, H ;
Siddiqui, MAQ ;
Solomon, W ;
Smith, ELP ;
Batuman, OA .
BLOOD, 2001, 98 (12) :3324-3331
[3]   Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development [J].
Arthur, HM ;
Ure, J ;
Smith, AJH ;
Renforth, G ;
Wilson, DI ;
Torsney, E ;
Charlton, R ;
Parums, DV ;
Jowett, T ;
Marchuk, DA ;
Burn, J ;
Diamond, AG .
DEVELOPMENTAL BIOLOGY, 2000, 217 (01) :42-53
[4]  
BATUMAN OA, 1983, J IMMUNOL, V130, P1051
[5]  
BECK I, 1991, J BIOL CHEM, V266, P15563
[6]   A murine model of hereditary hemorrhagic telangiectasia [J].
Bourdeau, A ;
Dumont, DJ ;
Letarte, M .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (10) :1343-1351
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   MEKK-1, a component of the stress (stress-activated protein kinase c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells [J].
Brown, JD ;
DiChiara, MR ;
Anderson, KR ;
Gimbrone, MA ;
Topper, JN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8797-8805
[9]   Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3 [J].
Caniggia, I ;
Mostachfi, H ;
Winter, J ;
Gassmann, M ;
Lye, SJ ;
Kuliszewski, M ;
Post, M .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (05) :577-587
[10]   Role of HIF-1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [J].
Carmeliet, P ;
Dor, Y ;
Herbert, JM ;
Fukumura, D ;
Brusselmans, K ;
Dewerchin, M ;
Neeman, M ;
Bono, F ;
Abramovitch, R ;
Maxwell, P ;
Koch, CJ ;
Ratcliffe, P ;
Moons, L ;
Jain, RK ;
Collen, D ;
Keshet, E .
NATURE, 1998, 394 (6692) :485-490