Characterization of the Xenopus rhodopsin gene

被引:67
作者
Batni, S
Scalzetti, L
Moody, SA
Knox, BE
机构
[1] SUNY HLTH SCI CTR, DEPT BIOCHEM & MOLEC BIOL, SYRACUSE, NY 13210 USA
[2] GEORGE WASHINGTON UNIV, MED CTR, DEPT ANAT, WASHINGTON, DC 20037 USA
[3] GEORGE WASHINGTON UNIV, MED CTR, NEUROSCI PROGRAM, WASHINGTON, DC 20037 USA
关键词
D O I
10.1074/jbc.271.6.3179
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The abundant Xenopus rhodopsin gene and cDNA have been cloned and characterized. The gene is composed of five exons spanning 3.5 kilobase pairs of genomic DNA and codes for a protein 82% identical to the bovine rhodopsin. The cDNA was expressed in COS1 cells and regenerated with 11-cis-retinal, forming a light-sensitive pigment with maximal absorbance at 500 nm. Both Southern blots and polymerase chain reaction amplification of intron 1 revealed multiple products, indicating more than one allele for the rhodopsin gene. Comparisons with other vertebrate rhodopsin 5' upstream sequences showed significant nucleotide homologies in the 200 nucleotides proximal to the transcription initiation site. This homology included the TATA box region, Ret 1/PCE1 core sequence (CCAATTA), and surrounding nucleotides. To functionally characterize the rhodopsin promoter, transient embryo transfections were used to assay transcriptional control elements in the 5' upstream region using a luciferase reporter. DNA sequences encompassing -5500 to +41 were able to direct luciferase expression in embryo heads. Reporter gene expression was also observed in embryos microinjected with reporter plasmids during early blastomere stages. These results locate transcriptional control elements upstream of the Xenopus rhodopsin gene and show the feasibility of embryo transfections for promoter analysis of rod-specific genes.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 55 条
  • [1] AHMAD I, 1994, J NEUROCHEM, V62, P396
  • [2] AKAZAWA C, 1992, J BIOL CHEM, V267, P21879
  • [3] ROD AND CONE PHOTORECEPTOR CELLS EXPRESS DISTINCT GENES FOR CGMP-GATED CHANNELS
    BONIGK, W
    ALTENHOFEN, W
    MULLER, F
    DOSE, A
    ILLING, M
    MOLDAY, RS
    KAUPP, UB
    [J]. NEURON, 1993, 10 (05) : 865 - 877
  • [4] PURIFICATION AND BIOCHEMICAL-CHARACTERIZATION OF THE PROMOTER-SPECIFIC TRANSCRIPTION FACTOR, SPL
    BRIGGS, MR
    KADONAGA, JT
    BELL, SP
    TJIAN, R
    [J]. SCIENCE, 1986, 234 (4772) : 47 - 52
  • [5] THE HUMAN BLUE OPSIN PROMOTER DIRECTS TRANSGENE EXPRESSION IN SHORT-WAVE CONES AND BIPOLAR CELLS IN THE MOUSE RETINA
    CHEN, J
    TUCKER, CL
    WOODFORD, B
    SZEL, A
    LEM, J
    GIANELLABORRADORI, A
    SIMON, MI
    BOGENMANN, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (07) : 2611 - 2615
  • [6] CHIU MI, 1994, J NEUROSCI, V14, P3426
  • [7] A SEQUENCE UPSTREAM OF THE MOUSE BLUE VISUAL PIGMENT GENE DIRECTS BLUE CONE-SPECIFIC TRANSGENE EXPRESSION IN MOUSE RETINAS
    CHIU, MI
    NATHANS, J
    [J]. VISUAL NEUROSCIENCE, 1994, 11 (04) : 773 - 780
  • [8] SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION
    CHOMCZYNSKI, P
    SACCHI, N
    [J]. ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) : 156 - 159
  • [9] XOTCH INHIBITS CELL-DIFFERENTIATION IN THE XENOPUS RETINA
    DORSKY, RI
    RAPAPORT, DH
    HARRIS, WA
    [J]. NEURON, 1995, 14 (03) : 487 - 496
  • [10] Dowing J. E., 1987, RETINA APPROACHABLE