CO-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM FC applications

被引:103
作者
Galletti, Camilla [1 ]
Specchia, Stefania [1 ]
Saracco, Guido [1 ]
Specchia, Vito [1 ]
机构
[1] Politecn Milan, Dept Mat Sci & Chem Engn, I-10129 Turin, Italy
关键词
CO methanation; H-2-rich gas clean up; Ru-based catalysts; gamma Al2O3 carrier; CARBON-MONOXIDE; PREFERENTIAL OXIDATION; HYDROGEN-PRODUCTION; PURIFICATION; MEMBRANE; REMOVAL; ALUMINA; OXIDES;
D O I
10.1016/j.ces.2009.06.052
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Selective CO methanation (CO-SMET) as a strategy for complete CO removal in fuel processing applications was investigated over Ru-based catalysts. The CO-SMET, in fact, seems to be a good alternative to the CO preferential oxidation (CO-PROX) for the applications on polymer electrolyte membrane fuel cells (PEM FCs) to transportation vehicles, boats, yachts and residential co-generators, as a CO-SMET reactor is inherently easier to control than the CO-PROX one. The present paper deals with the study on complete removal of CO in H-2-rich gas stream through CO-SMET over Ru-based catalysts supported on gamma Al2O3 carrier. All the catalysts, loaded with 3%, 4% and 5% Ru, respectively, were prepared by a conventional impregnation method and their CO removal performance was determined at the powder level in a fixed bed reactor. Starting from a synthetic reformate mixture of 0.5% CO, 40% H-2, 18% CO2, 15% H2O in He, the obtained results showed that CO complete conversion (residual outlet concentration lower than 2 ppmv, the analytical detection limit) was reached in a suitable temperature range where simultaneously both the CO2 methanation was kept at a low level and the reverse water gas shift reaction was negligible. The best results were obtained with 4% Ru-gamma Al2O3 in the range of 300-340 degrees C. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:590 / 596
页数:7
相关论文
共 33 条
[1]   Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system [J].
Batista, MS ;
Santiago, EI ;
Assaf, EM ;
Ticianelli, EA .
JOURNAL OF POWER SOURCES, 2005, 145 (01) :50-54
[2]   Catalytic hydrogenation of carbon oxides - a 10-year perspective [J].
Borodko, Y ;
Somorjai, GA .
APPLIED CATALYSIS A-GENERAL, 1999, 186 (1-2) :355-362
[3]   Onboard fuel processor for PEM fuel cell vehicles [J].
Bowers, Brian J. ;
Zhao, Jian L. ;
Ruffo, Michael ;
Khan, Rafey ;
Dattatraya, Druva ;
Dushman, Nathan ;
Beziat, Jean-Christophe ;
Boudjemaa, Fabien .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (10-11) :1437-1442
[4]   A PEMFC and H2 membrane purification integrated plant [J].
Brunetti, Adele ;
Barbieri, Giuseppe ;
Drioli, Enrico .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (07) :1081-1089
[5]   A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation [J].
Cheng, Xuan ;
Shi, Zheng ;
Glass, Nancy ;
Zhang, Lu ;
Zhang, Jiujun ;
Song, Datong ;
Liu, Zhong-Sheng ;
Wang, Haijiang ;
Shen, Jun .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :739-756
[6]   Preferential methanation of CO in a syngas involving CO2 at lower temperature range [J].
Choudhury, Muhamad B. I. ;
Ahmed, Shakeel ;
Shalabi, Mazen A. ;
Inui, Tomoyuki .
APPLIED CATALYSIS A-GENERAL, 2006, 314 (01) :47-53
[7]   Selective CO methanation catalysts for fuel processing applications [J].
Dagle, Robert A. ;
Wang, Yong ;
Xia, Guan-Guang ;
Strohm, James J. ;
Holladay, Jamelyn ;
Palo, Daniel R. .
APPLIED CATALYSIS A-GENERAL, 2007, 326 (02) :213-218
[8]   Components for PEM fuel cell systems using hydrogen and CO containing fuels [J].
Divisek, J ;
Oetjen, HF ;
Peinecke, V ;
Schmidt, VM ;
Stimming, U .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3811-3815
[9]  
*DOE GUID, 2009, TECHNICAL PLAN FUEL, P1
[10]   Experimental and modelling studies of CO poisoning in PEM fuel cells [J].
Farrell, C. G. ;
Gardner, C. L. ;
Ternan, M. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :282-293