MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

被引:134
作者
Korfiatis, Panagiotis [1 ]
Kline, Timothy L. [1 ]
Coufalova, Lucie [1 ,2 ,3 ]
Lachance, Daniel H. [4 ]
Parney, Ian F. [5 ]
Carter, Rickey E. [6 ]
Buckner, Jan C. [7 ]
Erickson, Bradley J. [1 ]
机构
[1] Mayo Clin, Dept Radiol, 200 1st St SW, Rochester, MN 55905 USA
[2] Charles Univ Prague, Fac Med 1, Dept Neurosurg, Mil Univ Hosp, Prague 12821, Czech Republic
[3] St Annes Univ Hosp Brno, Int Clin Res Ctr, Brno 65691, Czech Republic
[4] Mayo Clin, Dept Neurol, 200 1st St SW, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Neurol Surg, 200 1st St SW, Rochester, MN 55905 USA
[6] Mayo Clin, Dept Hlth Sci Res, 200 1st St SW, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Med Oncol, 200 1st St SW, Rochester, MN 55905 USA
关键词
MRI; glioblastoma multiforme; MGMT; imaging biomarkers; support vector machines; random forest; APPARENT DIFFUSION-COEFFICIENT; PROMOTER METHYLATION; MAGNETIC-RESONANCE; RADIOTHERAPY; TEMOZOLOMIDE; PLUS;
D O I
10.1118/1.4948668
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O-6-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78-0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker. (C) 2016 Author(s).
引用
收藏
页码:2835 / 2844
页数:10
相关论文
共 31 条
[1]   Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging Clinical article [J].
Ahn, Sung Soo ;
Shin, Na-Young ;
Chang, Jong Hee ;
Kim, Se Hoon ;
Kim, Eui Hyun ;
Kim, Dong Wook ;
Lee, Seung-Koo .
JOURNAL OF NEUROSURGERY, 2014, 121 (02) :367-373
[2]  
[Anonymous], 2008, Insight J
[3]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[4]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[7]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[8]   An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging [J].
Drabycz, Sylvia ;
Roldan, Gloria ;
de Robles, Paula ;
Adler, Daniel ;
McIntyre, John B. ;
Magliocco, Anthony M. ;
Cairncross, J. Gregory ;
Mitchell, J. Ross .
NEUROIMAGE, 2010, 49 (02) :1398-1405
[9]   Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors [J].
Eckel-Passow, Jeanette E. ;
Lachance, Daniel H. ;
Molinaro, Annette M. ;
Walsh, Kyle M. ;
Decker, Paul A. ;
Sicotte, Hugues ;
Pekmezci, Melike ;
Rice, Terri ;
Kosel, Matt L. ;
Smirnov, Ivan V. ;
Sarkar, Gobinda ;
Caron, Alissa A. ;
Kollmeyer, Thomas M. ;
Praska, Corinne E. ;
Chada, Anisha R. ;
Halder, Chandralekha ;
Hansen, Helen M. ;
Mccoy, Lucie S. ;
Bracci, Paige M. ;
Marshall, Roxanne ;
Zheng, Shichun ;
Reis, Gerald F. ;
Pico, Alexander R. ;
O'Neill, Brian P. ;
Buckner, Jan C. ;
Giannini, Caterina ;
Huse, Jason T. ;
Perry, Arie ;
Tihan, Tarik ;
Berger, Mitchell S. ;
Chang, Susan M. ;
Prados, Michael D. ;
Wiemels, Joseph ;
Wiencke, John K. ;
Wrensch, Margaret R. ;
Jenkins, Robert B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2499-2508
[10]   Radiogenomics and Imaging Phenotypes in Glioblastoma: Novel Observations and Correlation with Molecular Characteristics [J].
Ellingson, Benjamin M. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2015, 15 (01)