Quantum critical point in the Kondo-Heisenberg model on the honeycomb lattice

被引:23
作者
Saremi, Saeed [1 ]
Lee, Patrick A. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevB.75.165110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Kondo-Heisenberg model on the honeycomb lattice at half filling. Due to the vanishing of the density of states at the fermi level, the Kondo insulator disappears at a finite Kondo coupling even in the absence of the Heisenberg exchange. We adopt a large-N formulation of this model and use the renormalization group machinery to study systematically the second order phase transition of the Kondo insulator (KI) to the algebraic spin liquid (ASL). We note that neither phase breaks any physical symmetry, so that the transition is not described by the standard Ginzburg-Landau-Wilson critical point. We find a stable Lorentz-invariant fixed point that controls this second order phase transition. We calculate the exponent nu of the diverging length scale near the transition. The quasiparticle weight of the conduction electron vanishes at this KI-ASL fixed point, indicating non-Fermi-liquid behavior. The algebraic decay exponent of the staggered spin correlation is calculated at the fixed point and in the ASL phase. We find a jump in this exponent at the transition point.
引用
收藏
页数:18
相关论文
共 31 条
[1]   LARGE-N LIMIT OF THE HEISENBERG-HUBBARD MODEL - IMPLICATIONS FOR HIGH-TC SUPERCONDUCTORS [J].
AFFLECK, I ;
MARSTON, JB .
PHYSICAL REVIEW B, 1988, 37 (07) :3774-3777
[2]   SPONTANEOUS CHIRAL-SYMMETRY BREAKING IN 3-DIMENSIONAL QED [J].
APPELQUIST, TW ;
BOWICK, M ;
KARABALI, D ;
WIJEWARDHANA, LCR .
PHYSICAL REVIEW D, 1986, 33 (12) :3704-3713
[3]   Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model [J].
Assaad, FF .
PHYSICAL REVIEW LETTERS, 1999, 83 (04) :796-799
[4]   Field-induced antiferromagnetism in the Kondo insulator [J].
Beach, KSD ;
Lee, PA ;
Monthoux, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (02) :4
[5]  
Brown L. S., 1992, QUANTUM FIELD THEORY
[6]   Kondo effect in flux phases [J].
Cassanello, CR ;
Fradkin, E .
PHYSICAL REVIEW B, 1996, 53 (22) :15079-15094
[7]   Quantum criticality [J].
Coleman, P ;
Schofield, AJ .
NATURE, 2005, 433 (7023) :226-229
[8]  
COLEMAN P, 2005, PHYS REV B, V72
[9]  
Coleman S., 1985, ASPECTS SYMMETRY
[10]  
Collins J.C., 1986, RENORMALIZATION