MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase

被引:118
作者
Tatematsu, K [1 ]
Yamazaki, T [1 ]
Ishikawa, F [1 ]
机构
[1] Tokyo Inst Technol, Grad Sch Biosci & Biotechnol, Midori Ku, Yokohama, Kanagawa 2268501, Japan
关键词
D O I
10.1046/j.1365-2443.2000.00359.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: In vertebrates and plants, DNA methylation is one of the major mechanisms regulating gene expression. Recently a family of methyl-CpG-binding proteins has been identified, and some members, such as MeCP2 and MBD2, were shown to mediate gene repression by recruiting histone deacetylase complexes to methylated genes. However, the function of another member of this family, MBD3, remained elusive. Results: It was shown that MBD2 and MBD3 form homo- and hetero-dimers (or multimers) in vitro and in vivo. Significantly, the MBD2-MBD3 complex showed an affinity to hemi-methylated DNAs, a property that has never been reported with any member of the family proteins. MBD2 and MBD3 were co-localized with DNMT1 at replication foci in 293 cell nuclei at late S phase. Moreover, by a coimmunoprecipitation experiment, DNMT1 was shown to form a complex with MBD2 and MBD3. Finally, the abundance of MBD3 was highest in the late S phase when the DNMT1 is also most abundant, whereas the MBD2 level was largely constant throughout the cell cycle. Conclusions: The results suggest that MBD3 may play an important role in the S phase. We hypothesize that the MBD2-MBD3 complex recognizes hemimethylated DNA concurrent with DNA replication and recruits histone deacetylase complexes, as well as DNMT1, to establish and/or maintain the transcriptionally repressed chromatin.
引用
收藏
页码:677 / 688
页数:12
相关论文
共 43 条
[1]   Concurrent replication and methylation at mammalian origins of replication [J].
Araujo, FD ;
Knox, JD ;
Szyf, M ;
Price, GB ;
Zannis-Hadjopoulos, M .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (06) :3475-3482
[2]   Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency [J].
Bader, S ;
Walker, M ;
Heindrich, B ;
Bird, A ;
Bird, C ;
Hooper, M ;
Wyllie, A .
ONCOGENE, 1999, 18 (56) :8044-8047
[3]   Mammalian X-chromosome inactivation and the XIST gene [J].
Ballabio, Andrea ;
Willard, Huntington F. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1992, 2 (03) :439-447
[4]   Genomic imprinting in mammals [J].
Bartolomei, MS ;
Tilghman, SM .
ANNUAL REVIEW OF GENETICS, 1997, 31 :493-525
[5]   MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1 [J].
Bellacosa, A ;
Cicchillitti, L ;
Schepis, F ;
Riccio, A ;
Yeung, AT ;
Matsumoto, Y ;
Golemis, EA ;
Genuardi, M ;
Neri, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3969-3974
[6]   CLONING AND SEQUENCING OF A CDNA-ENCODING DNA METHYLTRANSFERASE OF MOUSE CELLS - THE CARBOXYL-TERMINAL DOMAIN OF THE MAMMALIAN ENZYMES IS RELATED TO BACTERIAL RESTRICTION METHYLTRANSFERASES [J].
BESTOR, T ;
LAUDANO, A ;
MATTALIANO, R ;
INGRAM, V .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 203 (04) :971-983
[7]   ACTIVATION OF MAMMALIAN DNA METHYLTRANSFERASE BY CLEAVAGE OF A ZN BINDING REGULATORY DOMAIN [J].
BESTOR, TH .
EMBO JOURNAL, 1992, 11 (07) :2611-2617
[8]   Methylation-induced repression - Belts, braces, and chromatin [J].
Bird, AP ;
Wolffe, AP .
CELL, 1999, 99 (05) :451-454
[9]   CHROMATIN STRUCTURE IS REQUIRED TO BLOCK TRANSCRIPTION OF THE METHYLATED HERPES-SIMPLEX VIRUS THYMIDINE KINASE GENE [J].
BUSCHHAUSEN, G ;
WITTIG, B ;
GRAESSMANN, M ;
GRAESSMANN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (05) :1177-1181
[10]   Human DNA (cytosine-5) methyltransferase PCNA complex as a target for p21(WAF1) [J].
Chuang, LSH ;
Ian, HI ;
Koh, TW ;
Ng, HH ;
Xu, GL ;
Li, BFL .
SCIENCE, 1997, 277 (5334) :1996-2000