Firm-like behavior of journals?: Scaling properties of their output and impact growth dynamics

被引:16
作者
Havemann, F [1 ]
Heinz, M [1 ]
Wagner-Döbler, R [1 ]
机构
[1] Humboldt Univ, Inst Lib Sci, D-10117 Berlin, Germany
来源
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY | 2005年 / 56卷 / 01期
关键词
D O I
10.1002/asi.20090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the study of growth dynamics of artificial and natural systems, the scaling properties of fluctuations can exhibit information on the underlying processes responsible for the observed macroscopic behavior according to H.E. Stanley and colleagues (Lee, Amaral, Canning, Meyer, Stanley, 1998; Plerou, Amaral, Gopikrishnan, Meyer, Stanley, 1999; Stanley et al., 1996). With such an approach, they examined the growth dynamics of firms, of national economies, and of university research fundings and paper output. We investigated the scaling properties of journal output and impact according to the Journal Citation Reports (JCR; ISI, Philadelphia, PA) and find distributions of paper output and of citations near to lognormality. Growth rate distributions are near to Laplace "tents," however with a better fit to Subbotin distributions. The width of fluctuations decays with size according to a power law. The form of growth rate distributions seems not to depend on journal size, and conditional probability densities of the growth rates can thus be scaled onto one graph. To some extent even quantitatively, all our results are in agreement with the observations of Stanley and others. Further on, a Matthew effect of journal citations is confirmed. If journals "behave" like business firms, a better understanding of Bradford's Law as a result of competition among publishing houses, journals, and topics suggests itself.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 28 条
[1]   Application of statistical physics methods and concepts to the study of science & technology systems [J].
Amaral, LAN ;
Gopikrishnan, P ;
Matia, K ;
Plerou, V ;
Stanley, HE .
SCIENTOMETRICS, 2001, 51 (01) :9-36
[2]   Power law scaling for a system of interacting units with complex internal structure [J].
Amaral, LAN ;
Buldyrev, SV ;
Havlin, S ;
Salinger, MA ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 1998, 80 (07) :1385-1388
[3]   Zipf distribution of US firm sizes [J].
Axtell, RL .
SCIENCE, 2001, 293 (5536) :1818-1820
[4]   TOWARDS A MULTIDISCIPLINARY BRADFORD LAW [J].
BOOKSTEIN, A .
SCIENTOMETRICS, 1994, 30 (01) :353-361
[5]   A stochastic model of firm growth [J].
Bottazzi, G ;
Secchi, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (1-2) :213-219
[6]   Corporate growth and industrial structures: some evidence from the Italian manufacturing industry [J].
Bottazzi, G ;
Cefis, E ;
Dosi, G .
INDUSTRIAL AND CORPORATE CHANGE, 2002, 11 (04) :705-723
[7]   On size and growth of business firms [J].
De Fabritiis, G ;
Pammolli, F ;
Riccaboni, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (1-2) :38-44
[8]  
De Solla Price D.J., 1963, LITTLE SCI BIG SCI
[9]  
GOFFMAN W, 1980, SCI INFORMATION SYST
[10]  
HAVEMANN F, 2003, P 9 INT C SCI INF DA, P91