Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

被引:897
作者
Agler, Matthew T. [1 ]
Ruhe, Jonas [1 ]
Kroll, Samuel [1 ]
Morhenn, Constanze [1 ]
Kim, Sang-Tae [2 ]
Weigel, Detlef [3 ]
Kemen, Eric M. [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Cologne, Germany
[2] Inst for Basic Sci Korea, Ctr Genome Engn, Daejeon, South Korea
[3] Max Planck Inst Dev Biol, Tubingen, Germany
关键词
ARABIDOPSIS-THALIANA; RESISTANCE; DIVERSITY; PHYLLOSPHERE; BACTERIA; RHIZOSPHERE; VIRULENCE; EVOLUTION; REVEALS; YEASTS;
D O I
10.1371/journal.pbio.1002352
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe-microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe-microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial "hubs," are strongly interconnected and have a severe effect on communities. By documenting these microbe-microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on "hub" microbes, which, via microbe-microbe interactions, transmit the effects to the microbial community. We analyzed two "hub" microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial "hubs" and their importance in phyllosphere microbiome structuring has crucial implications for plant-pathogen and microbe-microbe research and opens new entry points for ecosystem management and future targeted bio-control. The revelation that effects can cascade through communities via "hub" microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome "key-stone" pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes.
引用
收藏
页数:31
相关论文
共 85 条
[1]   Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature [J].
Alcazar, Ruben ;
von Reth, Marcel ;
Bautor, Jaqueline ;
Chae, Eunyoung ;
Weigel, Detlef ;
Koornneef, Maarten ;
Parker, Jane E. .
PLOS GENETICS, 2014, 10 (12)
[2]  
Atlas RM, 1997, HANDBOOK OF MICROBIO
[3]   Host Genotype Shapes the Foliar Fungal Microbiome of Balsam Poplar (Populus balsamifera) [J].
Balint, Miklos ;
Tiffin, Peter ;
Hallstroem, Bjoern ;
O'Hara, Robert B. ;
Olson, Matthew S. ;
Fankhauser, Johnathon D. ;
Piepenbring, Meike ;
Schmitt, Imke .
PLOS ONE, 2013, 8 (01)
[4]   Maize Leaf Epiphytic Bacteria Diversity Patterns Are Genetically Correlated with Resistance to Fungal Pathogen Infection [J].
Balint-Kurti, Peter ;
Simmons, Susan J. ;
Blum, James E. ;
Ballare, Carlos L. ;
Stapleton, Ann E. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2010, 23 (04) :473-484
[5]   Beyond borders: investigating microbiome interactivity and diversity for advanced biocontrol technologies [J].
Berg, Gabriele .
MICROBIAL BIOTECHNOLOGY, 2015, 8 (01) :5-7
[6]   Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J].
Berry, David ;
Widder, Stefanie .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[7]   Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance [J].
Bindschedler, Laurence V. ;
Dewdney, Julia ;
Blee, Kris A. ;
Stone, Julie M. ;
Asai, Tsuneaki ;
Plotnikov, Julia ;
Denoux, Carine ;
Hayes, Tezni ;
Gerrish, Chris ;
Davies, Dewi R. ;
Ausubel, Frederick M. ;
Bolwell, G. Paul .
PLANT JOURNAL, 2006, 47 (06) :851-863
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]   A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota [J].
Bodenhausen, Natacha ;
Bortfeld-Miller, Miriam ;
Ackermann, Martin ;
Vorholt, Julia A. .
PLOS GENETICS, 2014, 10 (04)
[10]   Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana [J].
Bodenhausen, Natacha ;
Horton, Matthew W. ;
Bergelson, Joy .
PLOS ONE, 2013, 8 (02)