The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalene sulfonic acid

被引:61
作者
Zhang, Lei [1 ]
机构
[1] Shanghai Normal Univ, Coll Life & Environm Sci, Dept Chem, Shanghai 200234, Peoples R China
关键词
electrocatalytic oxidation; polyaniline; beta-naphthalenesulfonic acid; ascorbic acid; electroactivity;
D O I
10.1016/j.electacta.2007.05.012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polyaniline-beta-naphthalenesulfonic acid composite film on platinum electrode surface has been synthesized via the electrochemical polymerization of aniline in the presence of P-naphthalenesulfonic acid (NSA). FT-IR, UV-vis and electrochemical characterization indicate the formation of the doped polyaniline. Further investigations found that the polyaniline (PAN) doped with NSA extended the electroactivity of PAN in neutral and even in alkaline media. The PAN-NSA composite film coated platinum electrodes are shown to be good electrocatalytic surfaces for the oxidation of ascorbic acid (AA) in phosphate buffer solution (PBS) of pH 7.0. The anode peak potential of AA shifts from 0.62 V at bare platinum electrode to 0.34 V at the PAN-NSA composite modified platinum electrode with greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5-60 mM using cyclic voltammetry. The kinetics of the catalytic reaction is investigated using rotating disk electrode (RDE) voltammetry, cyclic voltammetry and chronoamperometry. The results are explained using the theory of electrocatalytic reactions at chemically modified electrodes. The PAN-NSA composite film on the electrode surface shows good reproducibility and stability. (c) 2007 Published by Elsevier Ltd.
引用
收藏
页码:6969 / 6975
页数:7
相关论文
共 43 条
[1]   ELECTROCHEMISTRY OF SULPHUR .1. OVERPOTENTIAL IN THE DISCHARGE OF THE SULPHIDE ION [J].
ALLEN, PL ;
HICKLING, A .
TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (12) :1626-1635
[2]   CATALYSIS OF ELECTROCHEMICAL REACTIONS AT REDOX POLYMER ELECTRODES - KINETIC-MODEL FOR STATIONARY VOLTAMMETRIC TECHNIQUES [J].
ANDRIEUX, CP ;
DUMASBOUCHIAT, JM ;
SAVEANT, JM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1982, 131 (JAN) :1-35
[3]  
Bard A. J., 1980, ELECTROCHEMICAL METH, P106
[4]  
Bard A.J., 1980, ELECTROCHEMICAL METH, P288
[5]   The oxidation of ascorbate at poly(aniline)-poly(vinylsulfonate) composite coated electrodes [J].
Bartlett, PN ;
Wallace, ENK .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (08) :1491-1496
[6]   SPECTROSCOPIC AND ELECTRICAL CHARACTERIZATION OF SOME ANILINE OLIGOMERS AND POLYANILINE [J].
CAO, Y ;
LI, SZ ;
XUE, ZJ ;
GUO, D .
SYNTHETIC METALS, 1986, 16 (03) :305-315
[7]   EFFECT OF SOLVENTS AND COSOLVENTS ON THE PROCESSIBILITY OR POLYANILINE .1. SOLUBILITY AND CONDUCTIVITY STUDIES [J].
CAO, Y ;
QIU, JJ ;
SMITH, P .
SYNTHETIC METALS, 1995, 69 (1-3) :187-190
[8]   COUNTERION INDUCED PROCESSIBILITY OF CONDUCTING POLYANILINE AND OF CONDUCTING POLYBLENDS OF POLYANILINE IN BULK POLYMERS [J].
CAO, Y ;
SMITH, P ;
HEEGER, AJ .
SYNTHETIC METALS, 1992, 48 (01) :91-97
[9]   POLYANILINE - PROTONIC ACID DOPING OF THE EMERALDINE FORM TO THE METALLIC REGIME [J].
CHIANG, JC ;
MACDIARMID, AG .
SYNTHETIC METALS, 1986, 13 (1-3) :193-205
[10]  
Conley R, 1972, INFRARED SPECTROSCOP, P196