Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor

被引:77
作者
Kienhöfer, A [1 ]
Kast, P [1 ]
Hilvert, D [1 ]
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Organ Chem Lab, CH-8093 Zurich, Switzerland
关键词
D O I
10.1021/ja0341992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Citrulline was incorporated via chemical semisynthesis at position 90 in the active site of the AroH chorismate mutase from Bacillus subtilis. The wild-type arginine at this position makes hydrogen-bonding interactions with the ether oxygen of chorismate. Replacement of the positively charged guanidinium group with the isosteric but neutral urea has a dramatic effect on the ability of the enzyme to convert chorismate into prephenate. The Arg90Cit variant exhibits a >104-fold decrease in the catalytic rate constant kcat with a 2.7-fold increase in the Michaelis constant Km. In contrast, its affinity for a conformationally constrained inhibitor molecule that effectively mimics the geometry but not the dissociative character of the transition state is only reduced by a factor of ≈6. These results show that an active site merely complementary to the reactive conformation of chorismate is insufficient for catalysis of the mutase reaction. Instead, electrostatic stabilization of the polarized transition state by provision of a cationic hydrogen bond donor proximal to the oxygen in the breaking C-O bond is essential for high catalytic efficiency. Copyright © 2003 American Chemical Society.
引用
收藏
页码:3206 / 3207
页数:2
相关论文
共 30 条
[1]   SECONDARY TRITIUM ISOTOPE EFFECTS AS PROBES OF THE ENZYMIC AND NON-ENZYMIC CONVERSION OF CHORISMATE TO PREPHENATE [J].
ADDADI, L ;
JAFFE, EK ;
KNOWLES, JR .
BIOCHEMISTRY, 1983, 22 (19) :4494-4501
[2]   Investigation of the enzymatic and nonenzymatic cope rearrangement of carbaprephenate to carbachorismate [J].
Aemissegger, A ;
Jaun, B ;
Hilvert, D .
JOURNAL OF ORGANIC CHEMISTRY, 2002, 67 (19) :6725-6730
[3]   CHORISMATE MUTASE INHIBITORS - SYNTHESIS AND EVALUATION OF SOME POTENTIAL TRANSITION-STATE ANALOGS [J].
BARTLETT, PA ;
NAKAGAWA, Y ;
JOHNSON, CR ;
REICH, SH ;
LUIS, A .
JOURNAL OF ORGANIC CHEMISTRY, 1988, 53 (14) :3195-3210
[4]   CRYSTAL-STRUCTURES OF THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS AND ITS COMPLEX WITH A TRANSITION-STATE ANALOG [J].
CHOOK, YM ;
KE, HM ;
LIPSCOMB, WN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (18) :8600-8603
[5]   THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS - STRUCTURE DETERMINATION OF CHORISMATE MUTASE AND ITS COMPLEXES WITH A TRANSITION-STATE ANALOG AND PREPHENATE, AND IMPLICATIONS FOR THE MECHANISM OF THE ENZYMATIC-REACTION [J].
CHOOK, YM ;
GRAY, JV ;
KE, HM ;
LIPSCOMB, WN .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 240 (05) :476-500
[6]   Mutagenesis study of active site residues in chorismate mutase from Bacillus subtilis [J].
Cload, ST ;
Liu, DR ;
Pastor, RM ;
Schultz, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (07) :1787-1788
[7]   THE UNCATALYZED CLAISEN REARRANGEMENT OF CHORISMATE TO PREPHENATE PREFERS A TRANSITION-STATE OF CHAIRLIKE GEOMETRY [J].
COPLEY, SD ;
KNOWLES, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (18) :5306-5308
[8]   Synthesis of native proteins by chemical ligation [J].
Dawson, PE ;
Kent, SBH .
ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 :923-960
[9]   Semisynthesis of cytotoxic proteins using a modified protein splicing element [J].
Evans, TC ;
Benner, J ;
Xu, MQ .
PROTEIN SCIENCE, 1998, 7 (11) :2256-2264
[10]   MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS - PURIFICATION OF THE PROTEIN, MOLECULAR-CLONING OF THE GENE, AND OVEREXPRESSION OF THE GENE-PRODUCT IN ESCHERICHIA-COLI [J].
GRAY, JV ;
GOLINELLIPIMPANEAU, B ;
KNOWLES, JR .
BIOCHEMISTRY, 1990, 29 (02) :376-383