Optimal strategies for two-person normalized matrix game with variable payoffs

被引:6
作者
Bhurjee, Ajay Kumar [1 ]
Panda, Geetanjali [2 ]
机构
[1] Natl Inst Sci & Technol, Dept Math, Palur Hills, Berhampur 761008, Orissa, India
[2] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Zero-sum game; Interval optimization problem; Saddle point; Partial ordering; Interval equation; ZERO-SUM GAMES; INTERVAL;
D O I
10.1007/s12351-016-0237-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper considers a two-person zero-sum game model in which payoffs are varying in closed intervals. Conditions for the existence of saddle point for this model is studied in this paper. Further, a methodology is developed to obtain the optimal strategy for this game as well as the range of the corresponding optimal values. The theoretical development is verified through numerical example.
引用
收藏
页码:547 / 562
页数:16
相关论文
共 20 条
[1]   Brown-Robinson method for interval matrix games [J].
Akyar, Emrah ;
Akyar, Handan ;
Duzce, Serkan Ali .
SOFT COMPUTING, 2011, 15 (10) :2057-2064
[2]   Efficient solution of interval optimization problem [J].
Bhurjee, A. K. ;
Panda, G. .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2012, 76 (03) :273-288
[3]  
Cai Y, 2011, PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P217
[4]   Studying interval valued matrix games with fuzzy logic [J].
Collins, W. Dwayne ;
Hu, Chenyi .
SOFT COMPUTING, 2008, 12 (02) :147-155
[5]  
Collins WD, 2008, ADV INFORM KNOWL PRO, P147, DOI 10.1007/978-1-84800-326-2_7
[6]  
Daskalakis C, 2009, LECT NOTES COMPUT SC, V5556, P423, DOI 10.1007/978-3-642-02930-1_35
[7]   On Nash Equilibrium Strategy of Two-person Zero-sum Games with Trapezoidal Fuzzy Payoffs [J].
Dutta, Bapi ;
Gupta, S. K. .
FUZZY INFORMATION AND ENGINEERING, 2014, 6 (03) :299-314
[8]   On characterization of credibilistic equilibria of fuzzy-payoff two-player zero-sum game [J].
Gao, Jinwu ;
Liu, Zhi-Qiang ;
Shen, Puchen .
SOFT COMPUTING, 2009, 13 (02) :127-132
[9]  
Hladík M, 2010, KYBERNETIKA, V46, P435
[10]   Antagonistic games with interval parameters [J].
Levin, VI .
CYBERNETICS AND SYSTEMS ANALYSIS, 1999, 35 (04) :644-652