Dynamical mean field theory with the density matrix renormalization group -: art. no. 246403

被引:101
作者
García, DJ [1 ]
Hallberg, K
Rozenberg, MJ
机构
[1] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Paris 11, Phys Solides Lab, UMR 8502, F-91405 Orsay, France
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
关键词
D O I
10.1103/PhysRevLett.93.246403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limited by the number of sites that can be considered. We obtain accurate estimates of the critical values of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the correlated metal. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized.
引用
收藏
页数:4
相关论文
共 28 条
[1]  
[Anonymous], COMMUNICATION
[2]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[3]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[4]   Transport through quantum dots in mesoscopic circuits [J].
Cornaglia, PS ;
Balseiro, CA .
PHYSICAL REVIEW LETTERS, 2003, 90 (21) :4
[5]   Calculated phonon spectra of plutonium at high temperatures [J].
Dai, X ;
Savrasov, SY ;
Kotliar, G ;
Migliori, A ;
Ledbetter, H ;
Abrahams, E .
SCIENCE, 2003, 300 (5621) :953-955
[6]   Quantum impurity solvers using a slave rotor representation [J].
Florens, S ;
Georges, A .
PHYSICAL REVIEW B, 2002, 66 (16) :1-16
[7]   Fourth-order perturbation theory for the half-filled Hubbard model in infinite dimensions [J].
Gebhard, F ;
Jeckelmann, E ;
Mahlert, S ;
Nishimoto, S ;
Noack, RM .
EUROPEAN PHYSICAL JOURNAL B, 2003, 36 (04) :491-509
[8]   PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW B, 1993, 48 (10) :7167-7182
[9]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[10]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483