The use of petroleum coke as fuel in chemical-looping combustion

被引:248
作者
Leion, Henrik [1 ]
Mattisson, Tobias
Lyngfelt, Anders
机构
[1] Chalmers Univ Technol, Dept Environm Inorgan Chem, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Energy & Environm, S-41296 Gothenburg, Sweden
关键词
chemical-looping combustion; petroleum coke; oxygen carrying particles;
D O I
10.1016/j.fuel.2006.11.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical-looping combustion is a novel technique used for CO2 separation that previously has been demonstrated for gaseous fuel. This work demonstrates the feasibility of using solid fuel (petroleum coke) in chemical-looping combustion (CLC). Here, the reaction between the oxygen carrier and solid fuel occurs via the gasification intermediates, primarily CO and H-2. A laboratory fluidized-bed reactor system for solid fuel, simulating a CLC-system by exposing oxygen-carrying particles to alternating reducing and oxidizing conditions, has been developed. In each reducing period, 0.2 g of petroleum coke was added to 20 g of oxygen carrier composed of 60% active material of Fe2O3 and 40% inert MgAl2O4. The effect of steam and SO2 concentration in the fluidizing gas was investigated as well as effect of temperature. The rate of reaction was found to be highly dependent on the steam and SO2 concentration as well as the temperature. Also shown was that the presence of a metal oxide enhances the gasification of petroleum coke. A preliminary estimation of the oxygen carrier inventory needed in a real CLC system showed that it would be below 2000 kg/MWth,. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1947 / 1958
页数:12
相关论文
共 28 条
[1]   Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier [J].
Abad, A ;
Mattisson, T ;
Lyngfelt, A ;
Rydén, M .
FUEL, 2006, 85 (09) :1174-1185
[2]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[3]  
Adánez J, 2005, CARBON DIOXIDE CAPTURE FOR STORAGE IN DEEP GEOLOGIC FORMATIONS - RESULTS FROM THE CO2 CAPTURE PROJECT, VOLS 1 AND 2, P587
[4]  
BARRIO M, 2000, P THERMOCHEM BIOMAS, V1, P32
[5]  
CAO Y, 2004, DIV FUEL CHEM, V49, P815
[6]  
CAO Y, 2005, DIV FUEL CHEM, V50, P99
[7]  
CAO Y, 2005, 229 ACS NAT M SAN DI
[8]   Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (03) :968-977
[9]   Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (04) :668-676
[10]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225