共 35 条
Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni
被引:195
作者:
Hoffman, Paul S.
Sisson, Gary
Croxen, Matthew A.
Welch, Kevin
Harman, W. Dean
CremadeS, Nunilo
Morash, Michael G.
机构:
[1] Univ Virginia Hlth Syst, Div Infect Dis & Int Hlth, Dept Med, Charlottesville, VA 22908 USA
[2] Univ Virginia, Dept Microbiol, Charlottesville, VA 22908 USA
[3] Univ Virginia, Dept Chem, Charlottesville, VA 22908 USA
[4] Dalhousie Univ, Fac Med, Dept Microbiol & Immunol, Halifax, NS B3H 4H7, Canada
[5] Dalhousie Univ, Fac Med, Dept Med, Div Infect Dis, Halifax, NS B3H 4H7, Canada
[6] Univ Zaragoza, Fac Ciencias, Dept Bioquim & Biol Mol & Celular, E-50009 Zaragoza, Spain
[7] Biocomp & Phys Complex Syst Inst, Zaragoza, Spain
关键词:
D O I:
10.1128/AAC.01159-06
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K-i, 2 to 10 mu M) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 run (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO2) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and H-1 nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ- intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.
引用
收藏
页码:868 / 876
页数:9
相关论文