Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy

被引:144
作者
Eilert, Andre [1 ,2 ]
Roberts, F. Sloan [1 ,2 ]
Friebel, Daniel [1 ,2 ]
Nilsson, Anders [1 ,2 ,3 ]
机构
[1] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, 443 Via Ortega, Stanford, CA 95305 USA
[3] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2016年 / 7卷 / 08期
关键词
SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROREDUCTION; NANOPARTICLES; HYDROCARBONS; MORPHOLOGY; INSIGHTS; MONOXIDE; ENERGY;
D O I
10.1021/acs.jpclett.6b00367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.
引用
收藏
页码:1466 / 1470
页数:5
相关论文
共 32 条
[1]   COPPER IN SEA-WATER, POTENTIAL-PH DIAGRAMS [J].
BIANCHI, G ;
LONGHI, P .
CORROSION SCIENCE, 1973, 13 (11) :853-864
[2]   Electrochemical Reduction of CO2 using Supported Cu2O Nanoparticles [J].
Bugayong, J. ;
Griffin, G. L. .
ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02) :81-89
[3]   Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals [J].
Chen, Chung Shou ;
Handoko, Albertus D. ;
Wan, Jane Hui ;
Ma, Liang ;
Ren, Dan ;
Yeo, Boon Siang .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (01) :161-168
[4]   Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol [J].
Chi, Dinghui ;
Yang, Hengpan ;
Du, Yanfang ;
Lv, Ting ;
Sui, Guojiao ;
Wang, Huan ;
Lu, Jiaxing .
RSC ADVANCES, 2014, 4 (70) :37329-37332
[5]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[6]   Using XANES to obtain mechanistic information for the hydrolysis of CuCl2 and the decomposition of Cu2OCl2 in the thermochemical Cu-Cl cycle for H2 production [J].
Ferrandon, M. ;
Daggupati, V. ;
Wang, Z. ;
Naterer, G. ;
Trevani, L. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 119 (02) :975-982
[7]   Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO2 Electroreduction [J].
Friebel, Daniel ;
Mbuga, Felix ;
Rajasekaran, Srivats ;
Miller, Daniel J. ;
Ogasawara, Hirohito ;
Alonso-Mori, Roberto ;
Sokaras, Dimosthenis ;
Nordlund, Dennis ;
Weng, Tsu-Chien ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :7954-7961
[8]   Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) :1255-1265
[9]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[10]   Selective electrochemical conversion of CO2 to C2 hydrocarbons [J].
Goncalves, M. R. ;
Gomes, A. ;
Condeco, J. ;
Fernandes, R. ;
Pardal, T. ;
Sequeira, C. A. C. ;
Branco, J. B. .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (01) :30-32