Adaptive isogeometric analysis by local h-refinement with T-splines

被引:309
作者
Doerfel, Michael R. [1 ]
Juettler, Bert [2 ]
Simeon, Bernd [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Numer Math, Zentrum Math, D-85748 Garching, Germany
[2] Johannes Kepler Univ Linz, Inst Appl Geometry, Fac Nat Sci & Engn, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Adaptivity; A posteriori error estimation; Isogeometric analysis; NURBS; CAD; T-splines; MESHES;
D O I
10.1016/j.cma.2008.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Isogeometric analysis based on non-uniform rational B-splines (NURBS) as basis functions preserves the exact geometry but suffers from the drawback of a rectangular grid of control points in the parameter space, which renders a purely local refinement impossible. This paper demonstrates how this difficulty can be overcome by using T-splines instead. T-splines allow the introduction of so-called T-junctions, which are related to hanging nodes in the standard FEM. Obeying a few straightforward rules, rectangular patches in the parameter space of the T-splines can be subdivided and thus a local refinement becomes feasible while still preserving the exact geometry. Furthermore, it is shown how state-of-the-art a posteriori error estimation techniques can be combined with refinement by T-splines. Numerical examples underline the potential of isogeometric analysis with T-splines and give hints for further developments. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 275
页数:12
相关论文
共 20 条
[1]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[2]  
BASTIAN P, 1993, P 9 GAMM SEM NOT NUM, V46, P7
[3]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[4]  
Braess D., 1997, FINITE ELEMENTE
[5]  
Brenner S. C., 2007, MATH THEORY FINITE E
[6]   Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis - Plenary Lecture presented at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002 [J].
Carstensen, C .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (01) :3-21
[7]   Isogeometric analysis of structural vibrations [J].
Cottrell, J. A. ;
Reali, A. ;
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5257-5296
[8]   Dimensions of spline spaces over T-meshes [J].
Deng, JS ;
Chen, FL ;
Feng, YY .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (02) :267-283
[9]  
Deuflhard P., 1989, Impact of Computing in Science and Engineering, V1, P3, DOI 10.1016/0899-8248(89)90018-9
[10]   Hierarchical B-spline refinement [J].
Forsey, David R. ;
Bartels, Richard H. .
Computer Graphics (ACM), 1988, 22 (04) :205-212