Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome

被引:16
作者
Emanuelsson, Olof
Nagalakshmi, Ugrappa
Zheng, Deyou
Rozowsky, Joel S.
Urban, Alexander E.
Du, Jiang
Lian, Zheng
Stolc, Viktor
Weissman, Sherman
Snyder, Michael [1 ]
Gerstein, Mark B.
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06520 USA
[4] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[5] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA
关键词
D O I
10.1101/gr.5014606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic tiling microarrays have become a popular tool for interrogating the transcriptional activity of large regions of the genome in an unbiased fashion. There are several key parameters associated with each tiling experiment ( e. g., experimental protocols and genomic tiling density). Here, we assess the role of these parameters as they are manifest in different tiling-array platforms used for transcription mapping. First, we analyze how a number of published tiling-array experiments agree with established gene annotation on human chromosome 22. We observe that the transcription detected from high-density arrays correlates substantially better with annotation than that from other array types. Next, we analyze the transcription-mapping performance of the two main high-density oligonucleotide array platforms in the ENCODE regions of the human genome. We hybridize identical biological samples and develop several ways of scoring the arrays and segmenting the genome into transcribed and nontranscribed regions, with the aim of making the platforms most comparable to each other. Finally, we develop a platform comparison approach based on agreement with known annotation. Overall, we find that the performance improves with more data points per locus, coupled with statistical scoring approaches that properly take advantage of this, where this larger number of data points arises from higher genomic tiling density and the use of replicate arrays and mismatches. While we do find significant differences in the performance of the two high-density platforms, we also find that they complement each other to some extent. Finally, our experiments reveal a significant amount of novel transcription outside of known genes, and an appreciable sample of this was validated by independent experiments.
引用
收藏
页码:886 / 897
页数:12
相关论文
共 40 条
[1]   The Vertebrate Genome Annotation (Vega) database [J].
Ashurst, JL ;
Chen, CK ;
Gilbert, JGR ;
Jekosch, K ;
Keenan, S ;
Meidl, P ;
Searle, SM ;
Stalker, J ;
Storey, R ;
Trevanion, S ;
Wilming, L ;
Hubbard, T .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D459-D465
[2]   Design optimization methods for genomic DNA tiling arrays [J].
Bertone, P ;
Trifonov, V ;
Rozowsky, JS ;
Schubert, F ;
Emanuelsson, O ;
Karro, J ;
Kao, MY ;
Snyder, M ;
Gerstein, M .
GENOME RESEARCH, 2006, 16 (02) :271-281
[3]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[4]   Aligning multiple genomic sequences with the threaded blockset aligner [J].
Blanchette, M ;
Kent, WJ ;
Riemer, C ;
Elnitski, L ;
Smit, AFA ;
Roskin, KM ;
Baertsch, R ;
Rosenbloom, K ;
Clawson, H ;
Green, ED ;
Haussler, D ;
Miller, W .
GENOME RESEARCH, 2004, 14 (04) :708-715
[5]   LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA [J].
Brudno, M ;
Do, CB ;
Cooper, GM ;
Kim, MF ;
Davydov, E ;
Green, ED ;
Sidow, A ;
Batzoglou, S .
GENOME RESEARCH, 2003, 13 (04) :721-731
[6]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[7]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[8]   Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution [J].
Cheng, J ;
Kapranov, P ;
Drenkow, J ;
Dike, S ;
Brubaker, S ;
Patel, S ;
Long, J ;
Stern, D ;
Tammana, H ;
Helt, G ;
Sementchenko, V ;
Piccolboni, A ;
Bekiranov, S ;
Bailey, DK ;
Ganesh, M ;
Ghosh, S ;
Bell, I ;
Gerhard, DS ;
Gingeras, TR .
SCIENCE, 2005, 308 (5725) :1149-1154
[9]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[10]   Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes [J].
Guigó, R ;
Dermitzakis, ET ;
Agarwal, P ;
Ponting, CP ;
Parra, G ;
Reymond, A ;
Abril, JF ;
Keibler, E ;
Lyle, R ;
Ucla, C ;
Antonarakis, SE ;
Brent, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :1140-1145