Evolution of enzymatic activity in the enolase superfamily:: Structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate

被引:61
作者
Thompson, TB
Garrett, JB
Taylor, EA
Meganathan, R
Gerlt, JA
Rayment, I
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] No Illinois Univ, Dept Sci Biol, De Kalb, IL 60115 USA
关键词
D O I
10.1021/bi000855o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The X-ray structures of the ligand free (apo) and the Mg2+. o-succinylbenzonte (OSB) product complex of o-succinylbenzoate synthase (OSBS) from Escherichia coli have been solved to 1.65 and 1.77 Angstrom resolution, respectively. The structure of apo OSBS was solved by multiple isomorphous replacement in space group P2(1)2(1)2(1); the structure of the complex with Mg2+. OSB was solved by molecular replacement in space group P2(1)2(1)2. The two domain fold found for OSBS is similar to those found for other members of the enolase superfamily: a mixed alpha/beta capping domain formed from segments at the N- and C-termini of the polypeptide and a larger (alpha/beta)(7)beta barrel domain. Two regions of disorder were found in the structure of apo OSBS: (i) the loop between the first two beta-strands in the alpha/beta domain; and (ii) the first sheet-helix pair in the barrel domain. These regions are ordered in the product complex with Mg2+. OSB. As expected, the Mg2+. OSB pair is bound at the C-terminal end of the barrel domain. The electron density for the phenyl succinate component of the product is well-defined; however, the 1-carboxylate appears to adopt multiple conformations. The metal is octahedrally coordinated by Asp(161), Glu(190), and Asp(213), two water molecules, and one oxygen of the benzoate carboxylate group of OSB. The loop between the first two beta-strands in the alpha/beta motif interacts with the aromatic ring of OSB, Lys(133) and Lys(235) are positioned to function as acid/base catalysts in the dehydration reaction. Few hydrogen bonding or electrostatic interactions are involved in the binding of OSB to the active site; instead, most of the interactions between OSB and the protein an either indirect via water molecules or via hydrophobic interactions. As a result, evolution of both the shape and the volume of the active site should be subject to few structural constraints. This would provide a structural strategy for the evolution of new catalytic activities in homologues of OSBS and a likely explanation for how the OSBS from Amycolaptosis also can catalyze the racemization of N-acylamino acids [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-4258].
引用
收藏
页码:10662 / 10676
页数:15
相关论文
共 43 条
[1]   The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids [J].
Babbitt, PC ;
Hasson, MS ;
Wedekind, JE ;
Palmer, DRJ ;
Barrett, WC ;
Reed, GH ;
Rayment, I ;
Ringe, D ;
Kenyon, GL ;
Gerlt, JA .
BIOCHEMISTRY, 1996, 35 (51) :16489-16501
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions [J].
Cohen, GH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :1160-1161
[5]   Miscellaneous algorithms for density modification [J].
Cowtan, K ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1998, 54 :487-493
[6]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[7]   Further additions to MolScript version 1.4, including reading and contouring of electron-density maps [J].
Esnouf, RM .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 :938-940
[8]   THE EVOLUTION OF ALPHA-BETA-BARREL ENZYMES [J].
FARBER, GK ;
PETSKO, GA .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (06) :228-&
[9]   Evolution of enzymatic activities in the enolase superfamily:: Crystal structure of (D)-glucarate dehydratase from Pseudomonas putida [J].
Gulick, AM ;
Palmer, DRJ ;
Babbitt, PC ;
Gerlt, JA ;
Rayment, I .
BIOCHEMISTRY, 1998, 37 (41) :14358-14368
[10]   Evolution of enzymatic activities in the enolase superfamily:: Crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli [J].
Gulick, AM ;
Hubbard, BK ;
Gerlt, JA ;
Rayment, I .
BIOCHEMISTRY, 2000, 39 (16) :4590-4602