New perspectives on anaerobic methane oxidation

被引:343
作者
Valentine, DL [1 ]
Reeburgh, WS [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92679 USA
关键词
D O I
10.1046/j.1462-2920.2000.00135.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Anaerobic methane oxidation is a globally important but poorly understood process. Four lines of evidence have recently improved our understanding of this process. First, studies of recent marine sediments indicate that a consortium of methanogens and sulphate-reducing bacteria are responsible for anaerobic methane oxidation; a mechanism of 'reverse methanogenesis' was proposed, based on the principle of interspecies hydrogen transfer. Second, studies of known methanogens under low hydrogen and high methane conditions were unable to induce methane oxidation, indicating that 'reverse methanogenesis' is not a widespread process in methanogens. Third, lipid biomarker studies detected isotopically depleted archaeal and bacterial biomarkers from marine methane vents, and indicate that Archaea are the primary consumers of methane. Finally, phylogenetic studies indicate that only specific groups of Archaea and SRB are involved in methane oxidation. This review integrates results from these recent studies to constrain the responsible mechanisms.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 58 条
[1]   CARBON AND HYDROGEN ISOTOPE FRACTIONATION RESULTING FROM ANAEROBIC METHANE OXIDATION [J].
Alperin, M. ;
Reeburgh, W. ;
Whiticar, M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (03) :279-288
[2]  
ALPERIN MJ, 1989, R891 IMS, P241
[3]  
[Anonymous], MICROBIAL GROWTH C 1
[4]  
ATKINS PW, 1994, PHYSICAL CHEM
[5]  
BARNES RO, 1976, GEOLOGY, V4, P297, DOI 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO
[6]  
2
[7]   ANAEROBIC METHANE OXIDATION ON THE AMAZON SHELF [J].
BLAIR, NE ;
ALLER, RC .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (18) :3707-3715
[8]   Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J].
Borowski, WS ;
Paull, CK ;
Ussler, W .
MARINE GEOLOGY, 1999, 159 (1-4) :131-154
[9]  
Davis J.B., 1966, CHEM GEOL, V1, P137
[10]   STRUCTURE, BIOSYNTHESIS, AND PHYSICOCHEMICAL PROPERTIES OF ARCHAEBACTERIAL LIPIDS [J].
DEROSA, M ;
GAMBACORTA, A ;
GLIOZZI, A .
MICROBIOLOGICAL REVIEWS, 1986, 50 (01) :70-80