Variation in sequence and organization of splicing regulatory elements in vertebrate genes

被引:184
作者
Yeo, G
Hoon, S
Venkatesh, B
Burge, CB
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Inst Mol & Cell Biol, Singapore 138673, Singapore
关键词
Fugu; zebrafish; G triplets; exonic splicing enhancers; intronic splicing enhancers;
D O I
10.1073/pnas.0404901101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although core mechanisms and machinery of premRNA splicing are conserved from yeast to human, the details of intron recognition often differ, even between closely related organisms. For example, genes from the pufferfish Fugu rubripes generally contain one or more introns that are not properly spliced in mouse cells. Exploiting available genome sequence data, a battery of sequence analysis techniques was used to reach several conclusions about the organization and evolution of splicing regulatory elements in vertebrate genes. The classical splice site and putative branch site signals are completely conserved across the vertebrates studied (human, mouse, pufferfish, and zebrafish), and exonic splicing enhancers also appear broadly conserved in vertebrates. However, another class of splicing regulatory elements, the intronic splicing enhancers, appears to differ substantially between mammals and fish, with G triples (GGG) very abundant in mammalian introns but comparatively rare in fish. Conversely, short repeats of AC and GT are predicted to function as intronic splicing enhancers in fish but are not enriched in mammalian introns. Consistent with this pattern, exonic splicing enhancer-binding SR proteins are highly conserved across all vertebrates, whereas heterogeneous nuclear ribonucleoproteins, which bind many intronic sequences, vary in domain structure and even presence/absence between mammals and fish. Exploiting differences in intronic sequence composition, a statistical model was developed to predict the splicing phenotype of Fugu introns in mammalian systems and was used to engineer the spliceability of a Fugu intron in human cells by insertion of specific sequences, thereby rescuing splicing in human cells.
引用
收藏
页码:15700 / 15705
页数:6
相关论文
共 42 条
[1]   Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes [J].
Aparicio, S ;
Chapman, J ;
Stupka, E ;
Putnam, N ;
Chia, J ;
Dehal, P ;
Christoffels, A ;
Rash, S ;
Hoon, S ;
Smit, A ;
Gelpke, MDS ;
Roach, J ;
Oh, T ;
Ho, IY ;
Wong, M ;
Detter, C ;
Verhoef, F ;
Predki, P ;
Tay, A ;
Lucas, S ;
Richardson, P ;
Smith, SF ;
Clark, MS ;
Edwards, YJK ;
Doggett, N ;
Zharkikh, A ;
Tavtigian, SV ;
Pruss, D ;
Barnstead, M ;
Evans, C ;
Baden, H ;
Powell, J ;
Glusman, G ;
Rowen, L ;
Hood, L ;
Tan, YH ;
Elgar, G ;
Hawkins, T ;
Venkatesh, B ;
Rokhsar, D ;
Brenner, S .
SCIENCE, 2002, 297 (5585) :1301-1310
[2]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[3]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[4]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[5]   Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases [J].
Blencowe, BJ .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :106-110
[6]   Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family [J].
Caputi, M ;
Zahler, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43850-43859
[7]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298
[8]   The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream [J].
Chan, RCC ;
Black, DL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4667-4676
[9]   Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing [J].
Charlet-B, N ;
Logan, P ;
Singh, G ;
Cooper, TA .
MOLECULAR CELL, 2002, 9 (03) :649-658
[10]   The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site [J].
Del Gato-Konczak, F ;
Bourgeois, CF ;
Le Guiner, C ;
Kister, L ;
Gesnel, MC ;
Stévenin, J ;
Breathnach, R .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (17) :6287-6299