Neutralization of TRAIL death pathway protects human neurional cell line from β-amyloid toxicity

被引:95
作者
Cantarella, G
Uberti, D
Carsana, T
Lombardo, G
Bernardini, R
Memo, M
机构
[1] Univ Brescia, Dept Biomed Sci & Biotechnol, I-25124 Brescia, Italy
[2] Catania Univ, Dept Expt & Clin Pharmacol, Catania, Italy
关键词
human; Alzheimer's disease; immune system; cytokines; DNA microchip array; apoptosis; SH-SY5Y neuroblastoma cell line;
D O I
10.1038/sj.cdd.4401143
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here we report that a novel member of the TNF-alpha family, TNF-related apoptosis-inducing ligand (TRAIL), contributes substantially to amyloid-induced neurotoxicity in human SH-SY5Y neuronal cell line. Involvement of TRAIL in the amyloid-induced cell death is supported by cDNA array, Northern blot, and Western blot data, demonstrating increased TRAIL expression after treatment of the cells with a neurotoxic fragment of amyloid protein (PAP). TRAIL was also found to be released in the culture media after betaAP treatment with a time-course overlapping to contents of the intracellular protein. Contribution of TRAIL to betaAP neurotoxicity is demonstrated by data showing that TRAIL-neutralizing monoclonal antibody protects neuronal SH-SY5Y cells from betaAP neurotoxicity. Moreover, exposure of neuronal SH-SY5Y cells to TRAIL leads to cell death, indicating that this substance per se is endowed with neurotoxic properties. We also found that, similarly to betaAP and TRAIL, activation of the death-domain adaptor protein FADD results in neuronal cell death. Lack of FADD function, by overexpression of its dominant negative, rescued cells from either TRAIL- or betaAP-induced neurotoxicity, supporting the hypothesis that these three molecules share common intracellular pathways. Finally, we found that betaAP strongly activated caspase-8, and the cell-permeable, selective caspase-8 inhibitor z-IETD-FMK prevents both betaAP- and TRAIL-induced neurotoxicity. In view of TRAIL's potency in inducing neuronal death, and its role as mediator of betaAP, it is plausible to hypothesize that TRAIL can be regarded as a molecule that provides substantial contribution to betaAP-dependent cell death, which takes part in the progression of the neurode-generative process and related chronic inflammatory response.
引用
收藏
页码:134 / 141
页数:8
相关论文
共 37 条
[1]  
BIEDLER JL, 1978, CANCER RES, V38, P3751
[2]   TRAIL receptor-2 signals apoptosis through FADD and caspase-8 [J].
Bodmer, JL ;
Holler, N ;
Reynard, S ;
Vinciguerra, P ;
Schneider, P ;
Juo, P ;
Blenis, J ;
Tschopp, J .
NATURE CELL BIOLOGY, 2000, 2 (04) :241-243
[3]   Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway [J].
Chaudhary, PM ;
Eby, M ;
Jasmin, A ;
Bookwalter, A ;
Murray, J ;
Hood, L .
IMMUNITY, 1997, 7 (06) :821-830
[4]   Activation of cell cycle-associated proteins in neuronal death: a mandatory or dispensable path? [J].
Copani, A ;
Uberti, D ;
Sortino, MA ;
Bruno, V ;
Nicoletti, F ;
Memo, M .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :25-31
[5]   OXIDATIVE STRESS, GLUTAMATE, AND NEURODEGENERATIVE DISORDERS [J].
COYLE, JT ;
PUTTFARCKEN, P .
SCIENCE, 1993, 262 (5134) :689-695
[6]   The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain [J].
Degli-Esposti, MA ;
Dougall, WC ;
Smolak, PJ ;
Waugh, JY ;
Smith, CA ;
Goodwin, RG .
IMMUNITY, 1997, 7 (06) :813-820
[7]   Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain -: art. no. RC209 [J].
Dörr, J ;
Bechmann, I ;
Waiczies, S ;
Aktas, O ;
Walczak, H ;
Krammer, PH ;
Nitsch, R ;
Zipp, F .
JOURNAL OF NEUROSCIENCE, 2002, 22 (04)
[8]   Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL [J].
Emery, JG ;
McDonnell, P ;
Burke, MB ;
Deen, KC ;
Lyn, S ;
Silverman, C ;
Dul, E ;
Appelbaum, ER ;
Eichman, C ;
DiPrinzio, R ;
Dodds, RA ;
James, IE ;
Rosenberg, M ;
Lee, JC ;
Young, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14363-14367
[9]   Increased nuclear DNA oxidation in the brain in Alzheimer's disease [J].
Gabbita, SP ;
Lovell, MA ;
Markesbery, WR .
JOURNAL OF NEUROCHEMISTRY, 1998, 71 (05) :2034-2040
[10]   Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis [J].
Hilliard, B ;
Wilmen, A ;
Seidel, C ;
Liu, TST ;
Göke, R ;
Chen, YH .
JOURNAL OF IMMUNOLOGY, 2001, 166 (02) :1314-1319