Rotation and Kinetic Modifications of the Tokamak Ideal-Wall Pressure Limit

被引:20
作者
Menard, J. E. [1 ]
Wang, Z. [1 ]
Liu, Y. [2 ]
Bell, R. E. [1 ]
Kaye, S. M. [1 ]
Park, J. -K. [1 ]
Tritz, K. [3 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
基金
英国工程与自然科学研究理事会;
关键词
KELVIN-HELMHOLTZ INSTABILITY; NEUTRAL BEAM INJECTION; MAGNETOHYDRODYNAMIC MODES; EXTERNAL-MODES; VELOCITY SHEAR; ACTIVE CONTROL; TEARING MODES; PLASMA; STABILITY; STABILIZATION;
D O I
10.1103/PhysRevLett.113.255002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfven speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.
引用
收藏
页数:5
相关论文
共 62 条
[1]   Carbon ion plume emission produced by charge exchange with neutral beams on National Spherical Torus Experiment [J].
Bell, Ronald E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10)
[2]   Benchmarking kinetic calculations of resistive wall mode stability [J].
Berkery, J. W. ;
Liu, Y. Q. ;
Wang, Z. R. ;
Sabbagh, S. A. ;
Logan, N. C. ;
Park, J-K ;
Manickam, J. ;
Betti, R. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[3]   The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya) [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Reimerdes, H. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[4]   Resistive Wall Mode Instability at Intermediate Plasma Rotation [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Tritz, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[5]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[6]   Modeling of active control of external magnetohydrodynamic instabilities [J].
Bialek, J ;
Boozer, AH ;
Mauel, ME ;
Navratil, GA .
PHYSICS OF PLASMAS, 2001, 8 (05) :2170-2180
[7]   Active control of resistive wall modes in the large-aspect-ratio tokamak [J].
Bondeson, A ;
Liu, YQ ;
Gregoratto, D ;
Gribov, Y ;
Pustovitov, VD .
NUCLEAR FUSION, 2002, 42 (06) :768-779
[8]   Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks [J].
Bondeson, A ;
Chu, MS .
PHYSICS OF PLASMAS, 1996, 3 (08) :3013-3022
[9]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[10]   Energetic particle effects on n=1 resistive MHD instabilities in a DIII-D hybrid discharge [J].
Brennan, D. P. ;
Kim, C. C. ;
La Haye, R. J. .
NUCLEAR FUSION, 2012, 52 (03)