Global steady-state controllability of one-dimensional semilinear heat equations

被引:110
作者
Coron, JM [1 ]
Trélat, E [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
heat equation; controllability; pole shifting; Lyapunov functional;
D O I
10.1137/S036301290342471X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the problem of exact boundary controllability of semilinear one-dimensional heat equations. We prove that it is possible to move from any steady-state to any other by means of a boundary control, provided that both are in the same connected component of the set of steady-states. The proof is based on an effective feedback stabilization procedure, which is implemented.
引用
收藏
页码:549 / 569
页数:21
相关论文
共 18 条
[1]  
Bebernes J., 1989, Applied Mathematical Sciences, V83
[2]  
CAZENAVE T., 1990, MATH APPL, V1
[3]   Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations [J].
Coron, JM .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :513-554
[4]  
Diaz JI, 1996, LECT NOTES PURE APPL, V174, P63
[5]   APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR HEAT-EQUATION [J].
FABRE, C ;
PUEL, JP ;
ZUAZUA, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 :31-61
[6]  
Fernandez-Cara E., 1997, ESAIM. Control, Optimisation and Calculus of Variations, V2, P87, DOI 10.1051/cocv:1997104
[7]   Null and approximate controllability for weakly blowing up semilinear heat equations [J].
Fernández-Cara, E ;
Zuazua, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :583-616
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]  
Fursikov Andrei V., 1995, IMA VOL MATH APPL, V68, P149
[10]  
Henry J., 1977, THESIS PARIS