Global occurrences of extreme precipitation and the Madden-Julian oscillation: Observations and predictability

被引:181
作者
Jones, C [1 ]
Waliser, DE
Lau, KM
Stern, W
机构
[1] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
[2] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA
[3] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD 20771 USA
[4] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA
关键词
D O I
10.1175/3238.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study investigates 1) the eastward propagation of the Madden-Julian oscillation (MJO) and global occurrences of extreme precipitation, 2) the degree to which a general circulation model with a relatively realistic representation of the MJO simulates its influence on extremes, and 3) a possible modulation of the MJO on potential predictability of extreme precipitation events. The observational analysis shows increased frequency of extremes during active MJO phases in many locations. On a global scale, extreme events during active MJO periods are about 40% higher than in quiescent phases of the oscillation in locations of statistically significant signals. A 10-yr National Aeronautics and Space Administration (NASA) Goddard Laboratory for the Atmospheres (GLA) GCM simulation with fixed climatological SSTs is used to generate a control run and predictability experiments. Overall, the GLA model has a realistic representation of extremes in tropical convective regions associated with the MJO, although some shortcomings also seem to be present. The GLA model shows a robust signal in the frequency of extremes in the North Pacific and on the west coast of North America, which somewhat agrees with observational studies. The analysis of predictability experiments indicates higher success in the prediction of extremes during an active MJO than in quiescent situations. Overall, the predictability experiments indicate the mean number of correct forecasts of extremes during active MJO periods to be nearly twice the correct number of extremes during quiescent phases of the oscillation in locations of statistically significant signals.
引用
收藏
页码:4575 / 4589
页数:15
相关论文
共 99 条
[1]  
[Anonymous], R12761ARPA RAND CORP
[2]  
ARAKAWA A, 1974, J ATMOS SCI, V31, P674, DOI 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO
[3]  
2
[4]  
Balgovind R., 1983, 86064 NASA GODD SPAC, V1
[5]  
BELL GD, 1998, B AM METEOROL SOC, V79, P51
[6]  
Bond NA, 2003, WEATHER FORECAST, V18, P600, DOI 10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO
[7]  
2
[8]  
Carvalho LMV, 2004, J CLIMATE, V17, P88, DOI 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO
[9]  
2
[10]  
Cayan DR, 1999, J CLIMATE, V12, P2881, DOI 10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO