In silico evidence for DNA polymerase-β's substrate-induced conformational change

被引:37
作者
Arora, K
Schlick, T [1 ]
机构
[1] NYU, Dept Chem, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1529/biophysj.104.040915
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open'' (polymerase bound to gapped DNA) and "closed'' (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit'' mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate-leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer-in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.
引用
收藏
页码:3088 / 3099
页数:12
相关论文
共 64 条
[1]   DNA polymerase beta: Structure-fidelity relationship from pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant [J].
Ahn, J ;
Werneburg, BG ;
Tsai, MD .
BIOCHEMISTRY, 1997, 36 (05) :1100-1107
[2]   DNA polymerase β:: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes [J].
Ahn, JW ;
Kraynov, VS ;
Zhong, XJ ;
Werneburg, BG ;
Tsai, MD .
BIOCHEMICAL JOURNAL, 1998, 331 :79-87
[3]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[4]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[5]   Molecular dynamics simulation and essential dynamics study of mutated plastocyanin: structural, dynamical and functional effects of a disulfide bridge insertion at the protein surface [J].
Arcangeli, C ;
Bizzarri, AR ;
Cannistraro, S .
BIOPHYSICAL CHEMISTRY, 2001, 92 (03) :183-199
[6]   Concerted motions in copper plastocyanin and azurin: an essential dynamics study [J].
Arcangeli, C ;
Bizzarri, AR ;
Cannistraro, S .
BIOPHYSICAL CHEMISTRY, 2001, 90 (01) :45-56
[7]  
ARCANGELI C, 2001, BIOPHYS CHEM, V308, P681
[8]   STRUCTURES OF DNA AND RNA-POLYMERASES AND THEIR INTERACTIONS WITH NUCLEIC-ACID SUBSTRATES [J].
ARNOLD, E ;
DING, JP ;
HUGHES, SH ;
HOSTOMSKY, Z .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1995, 5 (01) :27-38
[9]   Principal component analysis and long time protein dynamics [J].
Balsera, MA ;
Wriggers, W ;
Oono, Y ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (07) :2567-2572
[10]   Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta [J].
Beard, WA ;
Osheroff, WP ;
Prasad, R ;
Sawaya, MR ;
Jaju, M ;
Wood, TG ;
Kraut, J ;
Kunkel, TA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) :12141-12144