Decomposition theorems for fuzzy supermartingales and submartingales

被引:10
作者
Feng, YH [1 ]
机构
[1] China Text Univ, Dept Basic Sci, Shanghai 200051, Peoples R China
关键词
fuzzy martingale; supermartingale; submartingale; Doob decomposition; Riesz decomposition;
D O I
10.1016/S0165-0114(98)00065-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Doob decomposition and Riesz decomposition theorems in standard martingale theory are generalized to fuzzy martingales. The concepts of two types of Riesz decomposition for fuzzy supermartingales are given and the necessary and sufficient conditions of that fuzzy supermartingale or submartingale (resp, supermartingale) has Doob decomposition (resp. Riesz decomposition) are discussed in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 10 条
[1]   MEASURABILITY CONCEPTS FOR FUZZY MAPPINGS [J].
BUTNARIU, D .
FUZZY SETS AND SYSTEMS, 1989, 31 (01) :77-82
[2]   METRIC-SPACES OF FUZZY-SETS [J].
DIAMOND, P ;
KLOEDEN, P .
FUZZY SETS AND SYSTEMS, 1990, 35 (02) :241-249
[3]   Gaussian fuzzy random variables [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 2000, 111 (03) :325-330
[4]   Convergence theorems for fuzzy random variables and fuzzy martingales [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 1999, 103 (03) :435-441
[5]  
He S-W., 1992, SEMIMARTINGALE THEOR
[6]   ON THE CONVERGENCE OF FUZZY-SETS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1985, 17 (01) :53-65
[7]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[8]   CONVERGENCE THEOREM FOR FUZZY MARTINGALES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (01) :107-122
[9]   FUZZY RANDOM-VARIABLES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :409-422
[10]  
Rockafellar R., 1972, CONVEX ANAL