Conditioning and upper-Lipschitz inverse subdifferentials in nonsmooth optimization problems

被引:36
作者
Cornejo, O
Jourani, A
Zalinescu, C
机构
[1] UNIV BOURGOGNE, DIJON, FRANCE
[2] UNIV AL I CUZA, FAC MATH, IASI, ROMANIA
关键词
subdifferentials; upper-Lipschitz property; conditioning; Ekeland variational principle;
D O I
10.1023/A:1022687412779
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study conditioning problems for convex and nonconvex functions defined on normed linear spaces. We extend the notion of upper Lipschitzness for multivalued functions introduced by Robinson, and show that this concept ensures local conditioning in the nonconvex case via an abstract subdifferential; in the convex case, we obtain complete characterizations of global conditioning in terms of an extension of the upper-Lipschitz property.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 26 条
[1]  
Bahraoui M., 1994, Set-Valued Anal, V2, P49, DOI DOI 10.1007/BF01027092
[2]   VERIFIABLE NECESSARY AND SUFFICIENT CONDITIONS FOR OPENNESS AND REGULARITY OF SET-VALUED AND SINGLE-VALUED MAPS [J].
BORWEIN, JM ;
ZHUANG, DM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (02) :441-459
[3]  
CORNEJO O, 1995, COUPLING PROXIMAL AL
[4]  
CORREA R, 1992, P AM MATH SOC, V116, P67
[5]  
EKELAND I, 1974, J MATH ANAL APPL, V134, P441
[6]  
Jourani A, 1995, STUD MATH, V117, P123
[7]  
LEMAIRE B, 1991, ADV OPT LECT NOT EC, V382, P122
[8]  
LEMAIRE B, 1992, BONNE POSITION CONDI
[9]  
LEMAIRE B, 1994, J CONVEX ANAL, V1, P75
[10]  
Lemaire B., 1989, New Methods in Optimization and Their Industrial Uses, P73