Effects of strain on electronic properties of graphene

被引:572
作者
Choi, Seon-Myeong [1 ]
Jhi, Seung-Hoon [1 ,2 ]
Son, Young-Woo [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea
[3] Korea Inst Adv Study, Seoul 130722, South Korea
关键词
MASSLESS DIRAC FERMIONS; CARBON NANOTUBES; STRENGTH;
D O I
10.1103/PhysRevB.81.081407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present first-principles calculations of electronic properties of graphene under uniaxial and isotropic strains, respectively. The semimetallic nature is shown to persist up to a very large uniaxial strain of 30% except a very narrow strain range where a tiny energy gap opens. As the uniaxial strain increases along a certain direction, the Fermi velocity parallel to it decreases quickly and vanishes eventually, whereas the Fermi velocity perpendicular to it increases by as much as 25%. Thus, the low energy properties with small uniaxial strains can be described by the generalized Weyl's equation while massless and massive electrons coexist with large ones. The work function is also predicted to increase substantially as both the uniaxial and isotropic strain increases. Hence, the homogeneous strain in graphene can be regarded as the effective electronic scalar potential.
引用
收藏
页数:4
相关论文
共 38 条
[1]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[2]   Comment on "Band structure engineering of graphene by strain: First-principles calculations" [J].
Farjam, M. ;
Rafii-Tabar, H. .
PHYSICAL REVIEW B, 2009, 80 (16)
[3]   Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001) [J].
Ferralis, Nicola ;
Maboudian, Roya ;
Carraro, Carlo .
PHYSICAL REVIEW LETTERS, 2008, 101 (15)
[4]   Pseudomagnetic Fields and Ballistic Transport in a Suspended Graphene Sheet [J].
Fogler, M. M. ;
Guinea, F. ;
Katsnelson, M. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (22)
[5]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[6]   Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3 [J].
Goerbig, M. O. ;
Fuchs, J. -N. ;
Montambaux, G. ;
Piechon, F. .
PHYSICAL REVIEW B, 2008, 78 (04)
[7]   Zero modes of tight-binding electrons on the honeycomb lattice [J].
Hasegawa, Yasumasa ;
Konno, Rikio ;
Nakano, Hiroki ;
Kohmoto, Mahito .
PHYSICAL REVIEW B, 2006, 74 (03)
[8]   Uniaxial-stress effects on the electronic properties of carbon nanotubes [J].
Heyd, R ;
Charlier, A ;
McRae, E .
PHYSICAL REVIEW B, 1997, 55 (11) :6820-6824
[9]   Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy [J].
Huang, Mingyuan ;
Yan, Hugen ;
Chen, Changyao ;
Song, Daohua ;
Heinz, Tony F. ;
Hone, James .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (18) :7304-7308
[10]   Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets [J].
Khare, Roopam ;
Mielke, Steven L. ;
Paci, Jeffrey T. ;
Zhang, Sulin ;
Ballarini, Roberto ;
Schatz, George C. ;
Belytschko, Ted .
PHYSICAL REVIEW B, 2007, 75 (07)