Gstat: A program for geostatistical modelling, prediction and simulation

被引:409
作者
Pebesma, EJ
Wesseling, CG
机构
[1] Univ Amsterdam, Landscape & Environm Res Grp, NL-1018 VZ Amsterdam, Netherlands
[2] Univ Utrecht, Fac Geog Sci, NL-3508 TC Utrecht, Netherlands
关键词
geostatistics; variogram modelling; kriging; conditional simulation; cokriging; universal kriging; generalized least squares; GIS;
D O I
10.1016/S0098-3004(97)00082-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 37 条
[1]  
Aho Alfred V., 2007, COMPILERS PRINCIPLES
[2]   PROBLEMS WITH UNIVERSAL KRIGING [J].
ARMSTRONG, M .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1984, 16 (01) :101-108
[3]  
Burrough P. A., 1986, PRINCIPLES GEOGRAPHI
[4]   REVISITING THE ACCURATE CALCULATION OF BLOCK-SAMPLE COVARIANCES USING GAUSS QUADRATURE [J].
CARR, JR ;
PALMER, JA .
MATHEMATICAL GEOLOGY, 1993, 25 (05) :507-524
[5]   QUADRATIC COVARIANCE ESTIMATION AND EQUIVALENCE OF PREDICTIONS [J].
CHRISTENSEN, R .
MATHEMATICAL GEOLOGY, 1993, 25 (05) :541-558
[6]  
CHRISTENSEN R, 1987, PLAIN ANSWERS COMPLE, P465
[7]  
Christensen R, 1991, LINEAR MODELS MULTIV
[8]  
CRESSIE N, 1985, MATH GEOL, V17, P239
[9]  
Cressie NA, 1991, STAT SPATIAL DATA
[10]  
Deutsch C. V., 1992, GSLIB GEOSTATISTICAL