Hydrogen peroxide yields during the incompatible interaction of tobacco suspension cells inoculated with Phytophthora nicotianae

被引:57
作者
Able, AJ
Guest, DI
Sutherland, MW [1 ]
机构
[1] Univ So Queensland, Ctr Rural & Environm Biotechnol, Toowoomba, Qld 4350, Australia
[2] Univ So Queensland, Fac Sci, Dept Biol & Phys Sci, Toowoomba, Qld 4350, Australia
[3] Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia
关键词
D O I
10.1104/pp.124.2.899
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rates of H2O2 production by tobacco suspension cells inoculated with zoospores from compatible or incompatible races of the pathogen Phytophthora nicotianae were followed by direct measurement of oxygen evolution from culture supernatants following catalase addition. Rates of HO2./O-2(-) production were compared by following the formation of the formazan of sodium, 3'-[1-[phenylamino-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate. In the incompatible interaction only, both reactive oxygen species (ROS) were produced by the cultured host cells in a minor burst between 0 and 2 h and then in a major burst between 8 and 12 h after inoculation. Absolute levels of H2O2 could not be accurately measured due to its metabolism by host cells, but results are consistent with the majority of H2O2 being formed via dismutation of HO2./O-2(-). The effects of inhibitors of endogenous Cu/Zn superoxide dismutase (diethyldithiocarbamate) and catalase (3-amino-1,2,4-triazole and salicylic acid) were also examined. Yields of ROS in the presence of the inhibitors diphenylene iodonium, allopurinol, and salicylhydroxamic acid suggest that ROS were generated in incompatible host responses by more than one mechanism.
引用
收藏
页码:899 / 910
页数:12
相关论文
共 62 条
[1]   Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae [J].
Able, AJ ;
Guest, DI ;
Sutherland, MW .
PLANT PHYSIOLOGY, 1998, 117 (02) :491-499
[2]   NAD(P)H OXIDASE AND PEROXIDASE-ACTIVITIES IN PURIFIED PLASMA-MEMBRANES FROM CAULIFLOWER INFLORESCENCES [J].
ASKERLUND, P ;
LARSSON, C ;
WIDELL, S ;
MOLLER, IM .
PHYSIOLOGIA PLANTARUM, 1987, 71 (01) :9-19
[3]   PLASMA-MEMBRANE REDOX ENZYME IS INVOLVED IN THE SYNTHESIS OF O2- AND H2O2 BY PHYTOPHTHORA ELICITOR-STIMULATED ROSE CELLS [J].
AUH, CK ;
MURPHY, TM .
PLANT PHYSIOLOGY, 1995, 107 (04) :1241-1247
[4]   ACTIVE OXYGEN IN PLANT PATHOGENESIS [J].
BAKER, CJ ;
ORLANDI, EW .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1995, 33 :299-321
[5]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[6]   CHARACTERIZATION OF A SUPEROXIDE-DISMUTASE MIMIC PREPARED FROM DESFERRIOXAMINE AND MNO2 [J].
BEYER, WF ;
FRIDOVICH, I .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1989, 271 (01) :149-156
[7]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[8]  
BINGHAM IJ, 1995, PHYSIOL PLANTARUM, V93, P427, DOI 10.1111/j.1399-3054.1995.tb06839.x
[9]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[10]   Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms [J].
Bolwell, GP ;
Davies, DR ;
Gerrish, C ;
Auh, CK ;
Murphy, TM .
PLANT PHYSIOLOGY, 1998, 116 (04) :1379-1385