Analysis of data from continuous probability distributions

被引:20
作者
Holy, TE [1 ]
机构
[1] PRINCETON UNIV,DEPT PHYS,PRINCETON,NJ 08544
关键词
D O I
10.1103/PhysRevLett.79.3545
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a set of points drawn from an unknown continuous probability distribution, one often wishes to infer the underlying distribution. This distribution can be estimated using a simple scalar field theory. Fluctuations around the estimate are characterized by a robust measure of goodness of fit, analogous to the conventional chi(2), whose distribution can also be calculated. The resulting method of data analysis has some advantages over conventional approaches. [S0031-9007(97)04449-9].
引用
收藏
页码:3545 / 3548
页数:4
相关论文
共 8 条
[1]  
[Anonymous], ANN STAT
[2]   Field theories for learning probability distributions [J].
Bialek, W ;
Callan, CG ;
Strong, SP .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4693-4697
[3]  
COLEMAN S, 1975, ASPECTS SYMMETRY, pCH7
[4]  
Devroye L., 1987, A course in density estimation
[5]  
Ghorai J., 1979, Journal of Statistical Computation and Simulation, V10, P65, DOI 10.1080/00949657908810347
[6]   NONPARAMETRIC ROUGHNESS PENALTIES FOR PROBABILITY DENSITIES [J].
GOOD, IJ ;
GASKINS, RA .
BIOMETRIKA, 1971, 58 (02) :255-+
[7]  
Shannon Claude E., 1964, The Mathematical Theory of Communication
[8]   OPTIMIZED PERTURBATION-THEORY [J].
STEVENSON, PM .
PHYSICAL REVIEW D, 1981, 23 (12) :2916-2944