Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes

被引:313
作者
Brautigam, CA
Steitz, TA
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
D O I
10.1016/S0959-440X(98)80010-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
New levels in the understanding of DNA replication have been achieved from recent crystal structure determinations of several DNA polymerases and their substrate complexes. The structure of an alpha family DNA polymerase from bacteriophage RB69 shows some similarities, but also considerable differences in structure and organization from the pol I family DNA polymerases. Also, the functions of three polymerase domains and their conserved residues have been clarified by studying structures of pol I family DNA polymerases complexed to their substrates. These structures also confirm that an identical two-metal ion catalytic mechanism proposed previously is used by both the nonhomologous pol I and pol beta family DNA polymerases.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 49 条
[1]   ON THE FIDELITY OF DNA-REPLICATION - MANGANESE MUTAGENESIS INVITRO [J].
BECKMAN, RA ;
MILDVAN, AS ;
LOEB, LA .
BIOCHEMISTRY, 1985, 24 (21) :5810-5817
[2]   The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I [J].
Bedford, E ;
Tabor, S ;
Richardson, CC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) :479-484
[3]   STRUCTURAL BASIS FOR THE 3'-5' EXONUCLEASE ACTIVITY OF ESCHERICHIA-COLI DNA-POLYMERASE-I - A 2 METAL-ION MECHANISM [J].
BEESE, LS ;
STEITZ, TA .
EMBO JOURNAL, 1991, 10 (01) :25-33
[4]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[5]   The carboxyl terminus of the bacteriophage T4 DNA polymerase is required for holoenzyme complex formation [J].
Berdis, AJ ;
Soumillion, P ;
Benkovic, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12822-12827
[6]  
BRYANT FR, 1983, BIOCHEMISTRY-US, V22, P3537, DOI 10.1021/bi00284a001
[7]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[8]   2.3-ANGSTROM CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF DNA POLYMERASE-BETA [J].
DAVIES, JF ;
ALMASSY, RJ ;
HOSTOMSKA, Z ;
FERRE, RA ;
HOSTOMSKY, Z .
CELL, 1994, 76 (06) :1123-1133
[9]   AN ATTEMPT TO UNIFY THE STRUCTURE OF POLYMERASES [J].
DELARUE, M ;
POCH, O ;
TORDO, N ;
MORAS, D ;
ARGOS, P .
PROTEIN ENGINEERING, 1990, 3 (06) :461-467
[10]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258