Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis

被引:45
作者
Hassidim, Miriam [1 ]
Yakir, Esther [1 ]
Fradkin, David [1 ]
Hilman, Dror [1 ]
Kron, Ido [1 ]
Keren, Nir [1 ]
Harir, Yael [1 ]
Yerushalmi, Shai [1 ]
Green, Rachel M. [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Life Sci, Dept Plant & Environm Sci, IL-91904 Jerusalem, Israel
关键词
circadian; chloroplast; Arabidopsis; signaling; RNA binding; retrograde signaling;
D O I
10.1111/j.1365-313X.2007.03160.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis circadian system regulates the expression of up to 36% of the nuclear genome, including many genes that encode photosynthetic proteins. The expression of nuclear-encoded photosynthesis genes is also regulated by signals from the chloroplasts, a process known as retrograde signaling. We have identified CHLOROPLAST RNA BINDING (CRB), a putative RNA-binding protein, and have shown that it is important for the proper functioning of the chloroplast. crb plants are smaller and paler than wild-type plants, and have altered chloroplast morphology and photosynthetic performance. Surprisingly, mutations in CRB also affect the circadian system, altering the expression of both oscillator and output genes. In order to determine whether the changes in circadian gene expression are specific to mutations in the CRB gene, or are more generally caused by the malfunctioning of the chloroplast, we also examined the circadian system in mutations affecting STN7, GUN1, and GUN5, unrelated nuclear-encoded chloroplast proteins known to be involved in retrograde signaling. Our results provide evidence that the functional state of the chloroplast may be an important factor that affects the circadian system.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 50 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes [J].
Asakura, Y ;
Hirohashi, T ;
Kikuchi, S ;
Belcher, S ;
Osborne, E ;
Yano, S ;
Terashima, I ;
Barkan, A ;
Nakai, M .
PLANT CELL, 2004, 16 (01) :201-214
[4]   All in good time:: the Arabidopsis circadian clock [J].
Barak, S ;
Tobin, EM ;
Andronis, C ;
Sugano, S ;
Green, RM .
TRENDS IN PLANT SCIENCE, 2000, 5 (12) :517-522
[5]   State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 [J].
Bellafiore, S ;
Barneche, F ;
Peltier, G ;
Rochaix, JD .
NATURE, 2005, 433 (7028) :892-895
[6]   Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression [J].
Biehl, A ;
Richly, E ;
Noutsos, C ;
Salamini, F ;
Leister, D .
GENE, 2005, 344 :33-41
[7]   CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts [J].
Bollenbach, TJ ;
Tatman, DA ;
Stern, DB .
PLANT JOURNAL, 2003, 36 (06) :842-852
[8]   Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases [J].
Bonardi, V ;
Pesaresi, P ;
Becker, T ;
Schleiff, E ;
Wagner, R ;
Pfannschmidt, T ;
Jahns, P ;
Leister, D .
NATURE, 2005, 437 (7062) :1179-1182
[9]   Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage [J].
Dodd, AN ;
Salathia, N ;
Hall, A ;
Kévei, E ;
Tóth, R ;
Nagy, F ;
Hibberd, JM ;
Millar, AJ ;
Webb, AAR .
SCIENCE, 2005, 309 (5734) :630-633
[10]   Ancient invasions: From endosymbionts to organelles [J].
Dyall, SD ;
Brown, MT ;
Johnson, PJ .
SCIENCE, 2004, 304 (5668) :253-257