Pre-clinical evaluation of an inverse planning module for segmental MLC based IMRT delivery

被引:5
作者
Georg, D [1 ]
Kroupa, B [1 ]
机构
[1] AKH Vienna, Dept Radiotherapy & Radiobiol, Div Med Radiat Phys, A-1090 Vienna, Austria
关键词
D O I
10.1088/0031-9155/47/24/401
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Phantom tests are performed for pre-clinical evaluation of a commercial inverse planning system (HELAX TMS, V 6.0) for segmented multileaf collimator (MLC) intensity modulated radiotherapy (IMRT) delivery. The optimization module has available two optimization algorithms: the target primary feasibility and the weighted feasibility algorithm, only the latter allows the user to specify weights for structures. In the first series, single beam tests are performed to evaluate the outcome of inverse planning in terms of plausibility for the following situations: oblique incidence, presence of inhomogeneities, multiple targets at different depths and multiple targets with different desired doses. Additionally, for these tests a manual plan is made for comparison. In the absence of organs at risk, both the optimization algorithms are found to assign the highest priority to low dose constraints for targets. In the second series, tests resembling clinical relevant configurations (simultaneous boost and concave target with critical organ) are performed with multiple beam arrangements in order to determine the impact of the system's configuration on inverse planning. It is found that the definition of certain segment number and segment size limitations does not largely compromise treatment plans when using multiple beams. On the other hand, these limitations are important for delivery efficiency and dosimetry. For the number of iterations and voxels per volume of interest, standard values in the system's configuration are considered to be sufficient. Additionally, it is demonstrated that precautions must be taken to precisely define treatment goals when using computerized treatment optimization. Similar phantom tests could be used for a direct dosimetric verification of all steps from inverse treatment planning to IMRT delivery.
引用
收藏
页码:N303 / N314
页数:12
相关论文
共 27 条
[1]   COLLAPSED CONE CONVOLUTION OF RADIANT ENERGY FOR PHOTON DOSE CALCULATION IN HETEROGENEOUS MEDIA [J].
AHNESJO, A .
MEDICAL PHYSICS, 1989, 16 (04) :577-592
[2]   Dose calculations for external photon beams in radiotherapy [J].
Ahnesjö, A ;
Aspradakis, MM .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (11) :R99-R155
[3]   A variable fluence step clustering and segmentation algorithm for step and shoot IMRT [J].
Bär, W ;
Alber, M ;
Nüsslin, F .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (07) :1997-2007
[4]   Optimization of the step-and-shoot leaf sequence for delivery of intensity modulated radiation therapy using a variable division scheme [J].
Beavis, AW ;
Ganney, PS ;
Whitton, VJ ;
Xing, L .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (09) :2457-2465
[5]   OPTIMIZATION OF BEAM ORIENTATIONS IN RADIATION-THERAPY - SOME THEORETICAL CONSIDERATIONS [J].
BORTFELD, T ;
SCHLEGEL, W .
PHYSICS IN MEDICINE AND BIOLOGY, 1993, 38 (02) :291-304
[6]   METHODS OF IMAGE-RECONSTRUCTION FROM PROJECTIONS APPLIED TO CONFORMATION RADIOTHERAPY [J].
BORTFELD, T ;
BURKELBACH, J ;
BOESECKE, R ;
SCHLEGEL, W .
PHYSICS IN MEDICINE AND BIOLOGY, 1990, 35 (10) :1423-1434
[7]   Intensity-modulated radiotherapy: Current status and issues of interest [J].
Boyer, AL ;
Butler, EB ;
DiPetrillo, TA ;
Engler, MJ ;
Fraass, B ;
Grant, W ;
Ling, CC ;
Low, DA ;
Mackie, TR ;
Mohan, R ;
Purdy, JA ;
Roach, M ;
Rosenman, JG ;
Verhey, LJ ;
Wong, JW ;
Cumberlin, RL ;
Stone, H ;
Palta, JR .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (04) :880-914
[8]   A comparative description of three multipurpose phantoms (MPP) for external audits of photon beams in radiotherapy:: the water MPP, the Umea MPP and the EC MPP [J].
Bridier, A ;
Nyström, H ;
Ferreira, I ;
Gomola, I ;
Huyskens, D .
RADIOTHERAPY AND ONCOLOGY, 2000, 55 (03) :285-293
[9]   An anatomy-based beam segmentation tool for intensity-modulated radiation therapy and its application to head-and-neck cancer [J].
De Gersem, W ;
Claus, F ;
De Wagter, C ;
De Neve, W .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (03) :849-859
[10]   Clinical delivery of intensity modulated conformal radiotherapy for relapsed or second-primary head and neck cancer using a multileaf collimator with dynamic control [J].
De Neve, W ;
De Gersem, W ;
Derycke, S ;
De Meerleer, G ;
Moerman, M ;
Bate, MT ;
Van Duyse, B ;
Vakaet, L ;
De Deene, Y ;
Mersseman, B ;
De Wagter, C .
RADIOTHERAPY AND ONCOLOGY, 1999, 50 (03) :301-314