On spatial periodic orbits and spatial chaos

被引:40
作者
Chen, GR [1 ]
Liu, ST
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Shandong Univ, Coll Sci & Engn, Inst Syst Sci, Shandong 250061, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
spatial chaos; spatial periodic orbit;
D O I
10.1142/S0218127403006935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces an analytical method for constructing spatial periodic orbits of specified periods. This result is then extended to generating spatial chaos in the sense of Li and Yorke.
引用
收藏
页码:935 / 941
页数:7
相关论文
共 25 条
[1]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[2]   CONTROLLING SPATIOTEMPORAL CHAOS IN A CHAIN OF THE COUPLED LOGISTIC MAPS [J].
ASTAKHOV, VV ;
ANISHCHENKO, VS ;
SHABUNIN, AV .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (06) :352-357
[3]  
Chen G., 1998, CHAOS ORDER PERSPECT
[4]  
Chen G., 1999, CONTROLLING CHAOS BI
[5]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[6]  
Hao B. L., 1989, ELEMENTARY SYMBOLIC
[7]   Synchronization of spatiotemporal chaos and its applications [J].
Hu, G ;
Xiao, JH ;
Yang, JZ ;
Xie, FG ;
Qu, ZL .
PHYSICAL REVIEW E, 1997, 56 (03) :2738-2746
[8]  
JAN FJ, 1992, INTRO CHAOS COHERENC
[9]  
KANEKI K, 1996, COMPLEX SYSTEMS CHAO
[10]   Analysis of minimal pinning density for controlling spatiotemporal chaos of a coupled map lattice [J].
Kwon, YS ;
Ham, SW ;
Lee, KK .
PHYSICAL REVIEW E, 1997, 55 (02) :2009-2012