Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins

被引:85
作者
Reissmann, Stefanie
Parnot, Charles
Booth, Christopher R.
Chiu, Wah
Frydman, Judith [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, BioX Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[4] Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Mars McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
关键词
D O I
10.1038/nsmb1236
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chaperonins are allosteric double-ring ATPases that mediate cellular protein folding. ATP binding and hydrolysis control opening and closing of the central chaperonin chamber, which transiently provides a protected environment for protein folding. During evolution, two strategies to close the chaperonin chamber have emerged. Archaeal and eukaryotic group II chaperonins contain a built-in lid, whereas bacterial chaperonins use a ring-shaped cofactor as a detachable lid. Here we show that the built-in lid is an allosteric regulator of group II chaperonins, which helps synchronize the subunits within one ring and, to our surprise, also influences inter-ring communication. The lid is dispensable for substrate binding and ATP hydrolysis, but is required for productive substrate folding. These regulatory functions of the lid may serve to allow the symmetrical chaperonins to function as 'two-stroke' motors and may also provide a timer for substrate encapsulation within the closed chamber.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 41 条
[1]   Inter-ring communication is disrupted in the GroEL mutant Arg13->Gly; Ala126->Val with known crystal structure [J].
Aharoni, A ;
Horovitz, A .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 258 (05) :732-735
[2]   The asymmetric ATPase cycle of the thermosome: Elucidation of the binding, hydrolysis and product-release steps [J].
Bigotti, Maria Giulia ;
Bellamy, Stuart R. W. ;
Clarke, Anthony R. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 362 (04) :835-843
[3]   Cooperativity in the thermosome [J].
Bigotti, MG ;
Clarke, AR .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 348 (01) :13-26
[4]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[5]   Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE [J].
Cliff, Matthew J. ;
Limpkin, Claire ;
Cameron, Angus ;
Burston, Steven G. ;
Clarke, Anthony R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (30) :21266-21275
[6]   Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT [J].
Ditzel, L ;
Löwe, J ;
Stock, D ;
Stetter, KO ;
Huber, H ;
Huber, R ;
Steinbacher, S .
CELL, 1998, 93 (01) :125-138
[7]   Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding [J].
Feldman, DE ;
Spiess, C ;
Howard, DE ;
Frydman, J .
MOLECULAR CELL, 2003, 12 (05) :1213-1224
[8]   Principles of chaperone-assisted protein folding: Differences between in vitro and in vivo mechanisms [J].
Frydman, J ;
Hartl, FU .
SCIENCE, 1996, 272 (5267) :1497-1502
[9]   Folding of newly translated proteins in vivo: The role of molecular chaperones [J].
Frydman, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :603-647
[10]   Group II chaperonins: New TRiC(k)s and turns of a protein folding machine [J].
Gutsche, I ;
Essen, LO ;
Baumeister, F .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (02) :295-312