Role of chromatographic techniques in proteomic analysis

被引:63
作者
Neverova, I [1 ]
Van Eyk, JE
机构
[1] Queens Univ, Dept Physiol, Kingston, ON K7L 3N6, Canada
[2] Johns Hopkins Univ, Dept Med, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biol Chem, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
来源
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES | 2005年 / 815卷 / 1-2期
关键词
multidimensional approach; proteomics; liquid chromatography-mass spectrometry;
D O I
10.1016/j.jchromb.2004.11.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Proteomics, the characterization of the proteome, is conceptually simple but technically challenging. Development of such technologies as mass spectrometry, multidimensional protein separation, and DNA sequencing has allowed the new field of proteomics to flourish. Proteomic analysis relies on a set of techniques chosen on the basis of the biological question. In any proteomic analysis, the first and most important task is the separation of a complex protein mixture, i.e. the proteome. Chromatography, one of the most powerful methods of separation, employs one or more inherent characteristics of a protein-its mass, isoelectric point, hydrophobicity or biospecificity. This review emphasizes high-performance liquid chromatography as an integrated part of technologies used to study the proteome, discusses the capabilities and limitations of current instruments, and highlights the potential of multidimensional liquid chromatography in proteomic analysis. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 112 条
[1]  
Anderson NG, 2001, PROTEOMICS, V1, P3, DOI 10.1002/1615-9861(200101)1:1<3::AID-PROT3>3.0.CO
[2]  
2-T
[3]   The human plasma proteome - A nonredundant list developed by combination of four separate sources [J].
Anderson, NL ;
Polanski, M ;
Pieper, R ;
Gatlin, T ;
Tirumalai, RS ;
Conrads, TP ;
Veenstra, TD ;
Adkins, JN ;
Pounds, JG ;
Fagan, R ;
Lobley, A .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (04) :311-326
[4]  
BARNARD G, 1986, METHOD ENZYMOL, V133, P284
[5]   Zeptomole-sensitivity electrospray ionization - Fourier transform ion cyclotron resonance mass spectrometry of proteins [J].
Belov, ME ;
Gorshkov, MV ;
Udseth, HR ;
Anderson, GA ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2000, 72 (10) :2271-2279
[6]   Dynamic range expansion applied to mass spectrometry based on data-dependent selective ion ejection in capillary liquid chromatography Fourier transform ion cyclotron resonance for enhanced proteome characterization [J].
Belov, ME ;
Anderson, GA ;
Angell, NH ;
Shen, YF ;
Tolic, N ;
Udseth, HR ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2001, 73 (21) :5052-5060
[7]   Baseline resolution of isobaric phosphorylated and sulfated peptides and nucleotides by electrospray ionization FTICR MS: Another step toward mass spectrometry-based proteomics [J].
Bossio, RE ;
Marshall, AG .
ANALYTICAL CHEMISTRY, 2002, 74 (07) :1674-1679
[8]   De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging [J].
Cagney, G ;
Emili, A .
NATURE BIOTECHNOLOGY, 2002, 20 (02) :163-170
[9]   Proteomics and cancer - Running before we can walk? [J].
Check, E .
NATURE, 2004, 429 (6991) :496-497
[10]  
DAVIS JM, 1983, ANAL CHEM, V55, P418, DOI 10.1021/ac00254a003