A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization

被引:48
作者
LeSauter, J
Yan, L
Vishnubhotla, B
Quintero, JE
Kuhlman, SJ
McMahon, DG
Silver, R
机构
[1] Barnard Coll, Dept Psychol, New York, NY 10027 USA
[2] Columbia Univ, Dept Psychol, New York, NY 10027 USA
[3] Univ Kentucky, Dept Physiol, Lexington, KY 40536 USA
[4] Columbia Univ, Dept Anat & Cell Biol, New York, NY 10032 USA
关键词
circadian rhythm; suprachiasmatic nucleus; period gene; green fluorescent protein; transgenic;
D O I
10.1016/S0006-8993(02)04084-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Period1 (Per1) is one of several clock genes driving the oscillatory mechanisms that mediate circadian rhythmicity. Per1 mRNA and protein are highly expressed in the suprachiasmatic nuclei, which contain oscillator cells that drive circadian rhythmicity in physiological and behavioral responses. We examined a transgenic mouse in which degradable green fluorescent protein (GFP) is driven by the mPer1 gene promoter. This mouse expresses precise free-running rhythms and characteristic light induced phase shifts. GFP protein (reporting Per1 mRNA) is expressed rhythmically as measured by either fluorescence or immunocytochemistry. In addition the animals show predicted rhythms of Per1 mRNA, PER1 and PER2 proteins. The localization of GFP overlaps with that of Per1 mRNA, PER1 and PER2 proteins. Together, these results suggest that GFP reports rhythmic Per1 expression. A surprising finding is that, at their peak expression time GFP, Per1 mRNA, PER1 and PER2 proteins are absent or not detectable in a subpopulation of SCN cells located in the core region of the nucleus. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 25 条
[1]   Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections [J].
Abrahamson, EE ;
Moore, RY .
BRAIN RESEARCH, 2001, 916 (1-2) :172-191
[2]   Light-induced c-Fos expression in the mouse suprachiasmatic nucleus: Immunoelectron microscopy reveals co-localization in multiple cell types [J].
Castel, M ;
Belenky, M ;
Cohen, S ;
Wagner, S ;
Schwartz, WJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1997, 9 (09) :1950-1960
[3]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[4]   Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP [J].
Feng, GP ;
Mellor, RH ;
Bernstein, M ;
Keller-Peck, C ;
Nguyen, QT ;
Wallace, M ;
Nerbonne, JM ;
Lichtman, JW ;
Sanes, JR .
NEURON, 2000, 28 (01) :41-51
[5]   Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms [J].
Field, MD ;
Maywood, ES ;
O'Brien, JA ;
Weaver, DR ;
Reppert, SM ;
Hastings, MH .
NEURON, 2000, 25 (02) :437-447
[6]   Role of the CLOCK protein in the mammalian circadian mechanism [J].
Gekakis, N ;
Staknis, D ;
Nguyen, HB ;
Davis, FC ;
Wilsbacher, LD ;
King, DP ;
Takahashi, JS ;
Weitz, CJ .
SCIENCE, 1998, 280 (5369) :1564-1569
[7]   Expression of Period genes:: Rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker [J].
Hamada, T ;
LeSauter, J ;
Venuti, JM ;
Silver, R .
JOURNAL OF NEUROSCIENCE, 2001, 21 (19) :7742-7750
[8]  
Hastings M H, 1999, J Neurosci, V19, pRC11
[9]   Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy [J].
Huang, WY ;
Aramburu, J ;
Douglas, PS ;
Izumo, S .
NATURE MEDICINE, 2000, 6 (05) :482-483
[10]   GFP fluorescence reports PeriodI circadian gene regulation in the mammalian biological clock [J].
Kuhlman, SJ ;
Quintero, JE ;
McMahon, DG .
NEUROREPORT, 2000, 11 (07) :1479-1482