Global existence for coupled reaction-diffusion systems

被引:17
作者
Boudiba, N
Pierre, M
机构
[1] ENS Cachan, Antenne Bretagne, F-35170 Bruz, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
reaction-diffusion systems; global existence; semilinear parabolic systems;
D O I
10.1006/jmaa.2000.6895
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove here global existence in time of classical solutions for reaction-diffusion systems with strong coupling in the diffusion and with natural structure conditions on the nonlinear reactive terms. This extends some similar results in the case of a diagonal diffusion-operator associated with nonlinearities preserving the positivity and the total mass of the solutions or for which the total mass is a priori bounded. Here, however, no positivity assumption is made since nondiagonal systems do not preserve it. (C) 2000 Academic Press.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 24 条
[1]  
AMANN H, 1985, J REINE ANGEW MATH, V360, P47
[2]  
Amann H., 1984, Annali della Scuola Normale Superiore di Pisa, V11, P593
[3]  
[Anonymous], LECT NOTES MATH
[4]  
BAILEY NT, 1975, MATH THEORY INFECT D
[5]  
BOUDIBA N, 1999, THESIS U RENNES 1
[6]   ON A RESULT OF MASUDA,K CONCERNING REACTION-DIFFUSION EQUATIONS [J].
HARAUX, A ;
YOUKANA, A .
TOHOKU MATHEMATICAL JOURNAL, 1988, 40 (01) :159-163
[7]  
Henry D, 1981, GEOMETRIC THEORY SEM, P3, DOI DOI 10.1007/BFB0089647
[8]  
HERRERO MA, IN PRESS ARMA
[9]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[10]   BOUNDS ON STEADY-STATES FOR A NONSYSTEMICALLY AUTOCATALYZED REACTION DIFFUSION SYSTEM [J].
INAMDAR, SR ;
KULKARNI, BD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :L461-L466