Cost-effective water quality assessment through the integration of monitoring data and modeling results

被引:18
作者
LoBuglio, Joseph N. [1 ]
Characklis, Gregory W. [1 ]
Serre, Marc L. [1 ]
机构
[1] Univ N Carolina, Dept Environm Sci & Engn, Sch Publ Hlth, Chapel Hill, NC 27599 USA
关键词
D O I
10.1029/2006WR005020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks, represent unexplored areas of research.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
AKITA Y, 2007, IN PRESS J ENV QUAL
[2]  
[Anonymous], 2002, TEMPORAL GIS ADV FUN
[3]   Confounding effect of flow on estuarine response to nitrogen loading [J].
Borsuk, ME ;
Stow, CA ;
Reckhow, KH .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2004, 130 (06) :605-614
[4]  
Bowen J.D., 2000, EST COAST MOD P 6 IN, V6, P1244
[5]   A CE-QUAL-W2 model of Neuse Estuary for total maximum daily load development [J].
Bowen, JD ;
Hieronymus, JW .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2003, 129 (04) :283-294
[6]  
BOWEN JD, 2000, 325D NC WAT RES RES
[7]   Engineering water quality models and TMDLs [J].
Chapra, SC .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2003, 129 (04) :247-256
[8]   Bayesian maximum entropy analysis and mapping: A farewell to kriging estimators? [J].
Christakos, G ;
Li, XY .
MATHEMATICAL GEOLOGY, 1998, 30 (04) :435-462
[9]  
Christakos G., 2000, MODERN SPATIOTEMPORA
[10]  
*DUK POW, 2005, WARMF VERS 5 27 CAT