Suppressed fuzzy C-means clustering algorithm

被引:141
作者
Fan, JL
Zhen, WZ
Xie, WX
机构
[1] Xian Inst Post & Telecommun, Dept Informat & Control, Xian 710061, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[3] Shenzhen Univ, Sch Informat Engn, Shenzhen 518060, Peoples R China
关键词
fuzzy partition; HCM algorithm; FCM algorithm;
D O I
10.1016/S0167-8655(02)00401-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the defect of rival checked fuzzy c-means clustering algorithm, a new algorithm: suppressed fuzzy c-means clustering algorithm is proposed. The new algorithm overcomes the shortcomings of the original algorithm, establishes more natural and more reasonable relationships between hard c-means clustering algorithm and fuzzy c-means clustering algorithm. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1607 / 1612
页数:6
相关论文
共 13 条
[1]  
[Anonymous], PATTERN RECOGNITION
[2]   EFFICIENT IMPLEMENTATION OF THE FUZZY C-MEANS CLUSTERING ALGORITHMS [J].
CANNON, RL ;
DAVE, JV ;
BEZDEK, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (02) :248-255
[3]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[4]  
Gao Xin-Bo, 2000, Acta Electronica Sinica, V28, P80
[5]  
HOWON C, 1992, IEEE INT C FUZZ SYST, P349
[6]   NEW ALGORITHMS FOR SOLVING THE FUZZY CLUSTERING PROBLEM [J].
KAMEL, MS ;
SELIM, SZ .
PATTERN RECOGNITION, 1994, 27 (03) :421-428
[7]   A RELAXATION APPROACH TO THE FUZZY CLUSTERING PROBLEM [J].
KAMEL, MS ;
SELIM, SZ .
FUZZY SETS AND SYSTEMS, 1994, 61 (02) :177-188
[8]  
MOSER CA, 1961, BRIT TOWNS
[9]  
Pei Jihong, 1998, Acta Electronica Sinica, V26, P83
[10]   A NEW APPROACH TO CLUSTERING [J].
RUSPINI, EH .
INFORMATION AND CONTROL, 1969, 15 (01) :22-&