A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems

被引:60
作者
Burns, JA [1 ]
King, BB
机构
[1] Virginia Polytech Inst & State Univ, Interdisciplinary Ctr Appl Math, Ctr Optimal Design & Control, Blacksburg, VA 24061 USA
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
关键词
reduced order controller; dynamic compensator; distributed parameter system; structural control problem;
D O I
10.1177/107754639800400305
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, the authors discuss a reduced basis approach to the development of low-order nonlinear feedback controllers for hybrid distributed parameter systems. This approach involves the use of distributed parameter control theory to design "optimal" infinite dimensional feedback control laws and approximation theory to design and compute low-order finite dimensional compensators. The resulting finite dimensional controller combines a nonlinear observer with a linear feedback law to produce a practical design. The authors concentrate on a weakly nonlinear distributed parameter system to illustrate the ideas.
引用
收藏
页码:297 / 323
页数:27
相关论文
共 22 条
[1]  
BASAR T, 1991, HINFINITY OPTIMAL CO
[2]   ON NONCONVERGENCE OF ADJOINT SEMIGROUPS FOR CONTROL-SYSTEMS WITH DELAYS [J].
BURNS, J ;
ITO, K ;
PROPST, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (06) :1442-1454
[3]  
BURNS JA, 1995, P SOC PHOTO-OPT INS, V2494, P60, DOI 10.1117/12.210519
[4]  
BURNS JA, 1994, IEEE DECIS CONTR P, P3967, DOI 10.1109/CDC.1994.411563
[5]   PROOF OF EXTENSIONS OF 2 CONJECTURES ON STRUCTURAL DAMPING FOR ELASTIC-SYSTEMS [J].
CHEN, SP ;
TRIGGIANI, R .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (01) :15-55
[6]  
Dorato P., 1995, LINEAR QUADRATIC CON
[7]   GUARANTEED MARGINS FOR LQG REGULATORS [J].
DOYLE, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (04) :756-757
[8]   APPROXIMATION-THEORY FOR LINEAR-QUADRATIC-GAUSSIAN OPTIMAL-CONTROL OF FLEXIBLE STRUCTURES [J].
GIBSON, JS ;
ADAMIAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (01) :1-37
[9]   STABILITY RADII OF LINEAR-SYSTEMS [J].
HINRICHSEN, D ;
PRITCHARD, AJ .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :1-10
[10]  
LASIECKA I, IN PRESS SIAM J CONT