Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor:: A revised global carbonate budget

被引:147
作者
Berelson, W. M.
Balch, W. M.
Najjar, R.
Feely, R. A.
Sabine, C.
Lee, K.
机构
[1] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA
[2] Bigelow Lab Ocean Sci, Boothbay Harbor, ME 04575 USA
[3] Penn State Univ, University Pk, PA 16802 USA
[4] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[5] Pohang Univ Sci & Technol, Pohang, South Korea
关键词
D O I
10.1029/2006GB002803
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] The global CaCO3 budget is constrained by new estimates of standing stocks, fluxes through the water column, and dissolution in the water column and on the sea floor. Previous estimates of carbonate production and export are indistinguishable within a large range of values, 0.4 - 1.8 Gt PIC yr(-1). Globally, excess alkalinity (TA*) and water mass tracers indicate dissolution of 1.0 Gt PIC yr(-1) between 200 and 1500 m, suggesting production and export must at least equal this amount. Most water column dissolution occurs at high latitudes, and alkalinity fluxes from outer shelf and upper slope sediments ( 100 - 1500 m) only support 5 - 10% of the TA* inventory. Below 2000 m, the sinking flux of PIC (0.6 Gt PIC yr(-1)) is consistent with the rate of sea floor dissolution (0.4 Gt PIC yr(-1)) plus burial (0.1 Gt PIC yr(-1)). This rain rate constrains the export value to > 1.6 Gt PIC yr(-1). Satellite-based estimates of standing stocks of CaCO3 indicate a decrease equatorward, which is opposite in trend to sediment trap fluxes. This observation may be explained by an equatorward decrease in sinking particle dissolution, systematic changes in PIC residence time with latitude, or satellite retrieval problems. Globally averaged euphotic zone standing stock (5.4 mmol m(-2)) and export estimates indicate PIC residence times of 5 - 18 days.
引用
收藏
页数:15
相关论文
共 85 条
[1]   Dynamics of fossil fuel CO2 neutralization by marine CaCO3 [J].
Archer, D ;
Kheshgi, H ;
Maier-Reimer, E .
GLOBAL BIOGEOCHEMICAL CYCLES, 1998, 12 (02) :259-276
[2]   A data-driven model of the global calcite lysocline [J].
Archer, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :511-526
[3]   A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals [J].
Armstrong, RA ;
Lee, C ;
Hedges, JI ;
Honjo, S ;
Wakeham, SG .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 49 (1-3) :219-236
[4]  
Bacastow R., 1990, CLIM DYNAM, V4, P95, DOI [10.1007/BF00208905, DOI 10.1007/BF00208905]
[5]   Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data [J].
Balch, WM ;
Gordon, HR ;
Bowler, BC ;
Drapeau, DT ;
Booth, ES .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C7) :1-21
[6]   Calcification rates in the equatorial Pacific along 140 degrees W [J].
Balch, WM ;
Kilpatrick, K .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1996, 43 (4-6) :971-&
[7]  
BALCH WM, 2007, IN PRESS DEEP SEA 2
[8]   A time series of benthic flux measurements from Monterey Bay, CA [J].
Berelson, W ;
McManus, J ;
Coale, K ;
Johnson, K ;
Burdige, D ;
Kilgore, T ;
Colodner, D ;
Chavez, F ;
Kudela, R ;
Boucher, J .
CONTINENTAL SHELF RESEARCH, 2003, 23 (05) :457-481
[9]  
Berelson W., 2001, OCEANOGRAPHY, V14, P59, DOI DOI 10.5670/0CEAN0G.2001.07
[10]   Biogenic matter diagenesis on the sea floor: A comparison between two continental margin transects [J].
Berelson, WM ;
McManus, J ;
Coale, KH ;
Johnson, KS ;
Kilgore, T ;
Burdige, D ;
Pilskaln, C .
JOURNAL OF MARINE RESEARCH, 1996, 54 (04) :731-762